Metamath Proof Explorer


Theorem 3bior1fand

Description: A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017)

Ref Expression
Hypothesis 3biorfd.1
|- ( ph -> -. th )
Assertion 3bior1fand
|- ( ph -> ( ( ch \/ ps ) <-> ( ( th /\ ta ) \/ ch \/ ps ) ) )

Proof

Step Hyp Ref Expression
1 3biorfd.1
 |-  ( ph -> -. th )
2 1 intnanrd
 |-  ( ph -> -. ( th /\ ta ) )
3 2 3bior1fd
 |-  ( ph -> ( ( ch \/ ps ) <-> ( ( th /\ ta ) \/ ch \/ ps ) ) )