Description: A disjunction is equivalent to a threefold disjunction with single falsehood, analogous to biorf . (Contributed by Alexander van der Vekens, 8-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3biorfd.1 | |- ( ph -> -. th ) |
|
| Assertion | 3bior1fd | |- ( ph -> ( ( ch \/ ps ) <-> ( th \/ ch \/ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3biorfd.1 | |- ( ph -> -. th ) |
|
| 2 | biorf | |- ( -. th -> ( ( ch \/ ps ) <-> ( th \/ ( ch \/ ps ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( ph -> ( ( ch \/ ps ) <-> ( th \/ ( ch \/ ps ) ) ) ) |
| 4 | 3orass | |- ( ( th \/ ch \/ ps ) <-> ( th \/ ( ch \/ ps ) ) ) |
|
| 5 | 3 4 | bitr4di | |- ( ph -> ( ( ch \/ ps ) <-> ( th \/ ch \/ ps ) ) ) |