Metamath Proof Explorer


Theorem 3bior1fd

Description: A disjunction is equivalent to a threefold disjunction with single falsehood, analogous to biorf . (Contributed by Alexander van der Vekens, 8-Sep-2017)

Ref Expression
Hypothesis 3biorfd.1
|- ( ph -> -. th )
Assertion 3bior1fd
|- ( ph -> ( ( ch \/ ps ) <-> ( th \/ ch \/ ps ) ) )

Proof

Step Hyp Ref Expression
1 3biorfd.1
 |-  ( ph -> -. th )
2 biorf
 |-  ( -. th -> ( ( ch \/ ps ) <-> ( th \/ ( ch \/ ps ) ) ) )
3 1 2 syl
 |-  ( ph -> ( ( ch \/ ps ) <-> ( th \/ ( ch \/ ps ) ) ) )
4 3orass
 |-  ( ( th \/ ch \/ ps ) <-> ( th \/ ( ch \/ ps ) ) )
5 3 4 bitr4di
 |-  ( ph -> ( ( ch \/ ps ) <-> ( th \/ ch \/ ps ) ) )