Metamath Proof Explorer


Theorem 3bior2fd

Description: A wff is equivalent to its threefold disjunction with double falsehood, analogous to biorf . (Contributed by Alexander van der Vekens, 8-Sep-2017)

Ref Expression
Hypotheses 3biorfd.1
|- ( ph -> -. th )
3biorfd.2
|- ( ph -> -. ch )
Assertion 3bior2fd
|- ( ph -> ( ps <-> ( th \/ ch \/ ps ) ) )

Proof

Step Hyp Ref Expression
1 3biorfd.1
 |-  ( ph -> -. th )
2 3biorfd.2
 |-  ( ph -> -. ch )
3 biorf
 |-  ( -. ch -> ( ps <-> ( ch \/ ps ) ) )
4 2 3 syl
 |-  ( ph -> ( ps <-> ( ch \/ ps ) ) )
5 1 3bior1fd
 |-  ( ph -> ( ( ch \/ ps ) <-> ( th \/ ch \/ ps ) ) )
6 4 5 bitrd
 |-  ( ph -> ( ps <-> ( th \/ ch \/ ps ) ) )