Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3bitr3d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3bitr3d.2 | |- ( ph -> ( ps <-> th ) ) |
||
| 3bitr3d.3 | |- ( ph -> ( ch <-> ta ) ) |
||
| Assertion | 3bitr3d | |- ( ph -> ( th <-> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | 3bitr3d.2 | |- ( ph -> ( ps <-> th ) ) |
|
| 3 | 3bitr3d.3 | |- ( ph -> ( ch <-> ta ) ) |
|
| 4 | 2 1 | bitr3d | |- ( ph -> ( th <-> ch ) ) |
| 5 | 4 3 | bitrd | |- ( ph -> ( th <-> ta ) ) |