Metamath Proof Explorer


Theorem 3bitr3d

Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996)

Ref Expression
Hypotheses 3bitr3d.1
|- ( ph -> ( ps <-> ch ) )
3bitr3d.2
|- ( ph -> ( ps <-> th ) )
3bitr3d.3
|- ( ph -> ( ch <-> ta ) )
Assertion 3bitr3d
|- ( ph -> ( th <-> ta ) )

Proof

Step Hyp Ref Expression
1 3bitr3d.1
 |-  ( ph -> ( ps <-> ch ) )
2 3bitr3d.2
 |-  ( ph -> ( ps <-> th ) )
3 3bitr3d.3
 |-  ( ph -> ( ch <-> ta ) )
4 2 1 bitr3d
 |-  ( ph -> ( th <-> ch ) )
5 4 3 bitrd
 |-  ( ph -> ( th <-> ta ) )