Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3bitr4d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
3bitr4d.2 | |- ( ph -> ( th <-> ps ) ) |
||
3bitr4d.3 | |- ( ph -> ( ta <-> ch ) ) |
||
Assertion | 3bitr4d | |- ( ph -> ( th <-> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr4d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | 3bitr4d.2 | |- ( ph -> ( th <-> ps ) ) |
|
3 | 3bitr4d.3 | |- ( ph -> ( ta <-> ch ) ) |
|
4 | 1 3 | bitr4d | |- ( ph -> ( ps <-> ta ) ) |
5 | 2 4 | bitrd | |- ( ph -> ( th <-> ta ) ) |