Metamath Proof Explorer


Theorem 3bitr4rd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitr4d.1
|- ( ph -> ( ps <-> ch ) )
3bitr4d.2
|- ( ph -> ( th <-> ps ) )
3bitr4d.3
|- ( ph -> ( ta <-> ch ) )
Assertion 3bitr4rd
|- ( ph -> ( ta <-> th ) )

Proof

Step Hyp Ref Expression
1 3bitr4d.1
 |-  ( ph -> ( ps <-> ch ) )
2 3bitr4d.2
 |-  ( ph -> ( th <-> ps ) )
3 3bitr4d.3
 |-  ( ph -> ( ta <-> ch ) )
4 3 1 bitr4d
 |-  ( ph -> ( ta <-> ps ) )
5 4 2 bitr4d
 |-  ( ph -> ( ta <-> th ) )