Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3bitr4d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 3bitr4d.2 | |- ( ph -> ( th <-> ps ) ) |
||
| 3bitr4d.3 | |- ( ph -> ( ta <-> ch ) ) |
||
| Assertion | 3bitr4rd | |- ( ph -> ( ta <-> th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr4d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | 3bitr4d.2 | |- ( ph -> ( th <-> ps ) ) |
|
| 3 | 3bitr4d.3 | |- ( ph -> ( ta <-> ch ) ) |
|
| 4 | 3 1 | bitr4d | |- ( ph -> ( ta <-> ps ) ) |
| 5 | 4 2 | bitr4d | |- ( ph -> ( ta <-> th ) ) |