Metamath Proof Explorer


Theorem 3bitrrd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006)

Ref Expression
Hypotheses 3bitrd.1
|- ( ph -> ( ps <-> ch ) )
3bitrd.2
|- ( ph -> ( ch <-> th ) )
3bitrd.3
|- ( ph -> ( th <-> ta ) )
Assertion 3bitrrd
|- ( ph -> ( ta <-> ps ) )

Proof

Step Hyp Ref Expression
1 3bitrd.1
 |-  ( ph -> ( ps <-> ch ) )
2 3bitrd.2
 |-  ( ph -> ( ch <-> th ) )
3 3bitrd.3
 |-  ( ph -> ( th <-> ta ) )
4 1 2 bitr2d
 |-  ( ph -> ( th <-> ps ) )
5 3 4 bitr3d
 |-  ( ph -> ( ta <-> ps ) )