Metamath Proof Explorer


Theorem 3brtr4d

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 21-Feb-2005)

Ref Expression
Hypotheses 3brtr4d.1
|- ( ph -> A R B )
3brtr4d.2
|- ( ph -> C = A )
3brtr4d.3
|- ( ph -> D = B )
Assertion 3brtr4d
|- ( ph -> C R D )

Proof

Step Hyp Ref Expression
1 3brtr4d.1
 |-  ( ph -> A R B )
2 3brtr4d.2
 |-  ( ph -> C = A )
3 3brtr4d.3
 |-  ( ph -> D = B )
4 2 3 breq12d
 |-  ( ph -> ( C R D <-> A R B ) )
5 1 4 mpbird
 |-  ( ph -> C R D )