Metamath Proof Explorer


Theorem 3brtr4g

Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997)

Ref Expression
Hypotheses 3brtr4g.1
|- ( ph -> A R B )
3brtr4g.2
|- C = A
3brtr4g.3
|- D = B
Assertion 3brtr4g
|- ( ph -> C R D )

Proof

Step Hyp Ref Expression
1 3brtr4g.1
 |-  ( ph -> A R B )
2 3brtr4g.2
 |-  C = A
3 3brtr4g.3
 |-  D = B
4 2 3 breq12i
 |-  ( C R D <-> A R B )
5 1 4 sylibr
 |-  ( ph -> C R D )