Metamath Proof Explorer
Description: Substitution of equality into both sides of a binary relation.
(Contributed by NM, 16-Jan-1997)
|
|
Ref |
Expression |
|
Hypotheses |
3brtr4g.1 |
|- ( ph -> A R B ) |
|
|
3brtr4g.2 |
|- C = A |
|
|
3brtr4g.3 |
|- D = B |
|
Assertion |
3brtr4g |
|- ( ph -> C R D ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3brtr4g.1 |
|- ( ph -> A R B ) |
2 |
|
3brtr4g.2 |
|- C = A |
3 |
|
3brtr4g.3 |
|- D = B |
4 |
2 3
|
breq12i |
|- ( C R D <-> A R B ) |
5 |
1 4
|
sylibr |
|- ( ph -> C R D ) |