| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cubeslem1.a |  |-  ( ph -> A e. QQ ) | 
						
							| 2 |  | qre |  |-  ( A e. QQ -> A e. RR ) | 
						
							| 3 | 1 2 | syl |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 5 | 3 4 | lttri4d |  |-  ( ph -> ( A < 0 \/ A = 0 \/ 0 < A ) ) | 
						
							| 6 |  | simpl |  |-  ( ( A e. RR /\ A < 0 ) -> A e. RR ) | 
						
							| 7 |  | 0red |  |-  ( ( A e. RR /\ A < 0 ) -> 0 e. RR ) | 
						
							| 8 |  | peano2re |  |-  ( A e. RR -> ( A + 1 ) e. RR ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. RR /\ A < 0 ) -> ( A + 1 ) e. RR ) | 
						
							| 10 | 9 | resqcld |  |-  ( ( A e. RR /\ A < 0 ) -> ( ( A + 1 ) ^ 2 ) e. RR ) | 
						
							| 11 |  | simpr |  |-  ( ( A e. RR /\ A < 0 ) -> A < 0 ) | 
						
							| 12 | 9 | sqge0d |  |-  ( ( A e. RR /\ A < 0 ) -> 0 <_ ( ( A + 1 ) ^ 2 ) ) | 
						
							| 13 | 6 7 10 11 12 | ltletrd |  |-  ( ( A e. RR /\ A < 0 ) -> A < ( ( A + 1 ) ^ 2 ) ) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( ( A e. RR /\ A < 0 ) -> A < ( ( A + 1 ) ^ 2 ) ) ) | 
						
							| 15 | 3 14 | mpand |  |-  ( ph -> ( A < 0 -> A < ( ( A + 1 ) ^ 2 ) ) ) | 
						
							| 16 |  | 0lt1 |  |-  0 < 1 | 
						
							| 17 | 16 | a1i |  |-  ( A = 0 -> 0 < 1 ) | 
						
							| 18 |  | id |  |-  ( A = 0 -> A = 0 ) | 
						
							| 19 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 20 | 19 | a1i |  |-  ( A = 0 -> ( 1 ^ 2 ) = 1 ) | 
						
							| 21 | 17 18 20 | 3brtr4d |  |-  ( A = 0 -> A < ( 1 ^ 2 ) ) | 
						
							| 22 |  | 0cnd |  |-  ( A = 0 -> 0 e. CC ) | 
						
							| 23 |  | 1cnd |  |-  ( A = 0 -> 1 e. CC ) | 
						
							| 24 | 18 | oveq1d |  |-  ( A = 0 -> ( A + 1 ) = ( 0 + 1 ) ) | 
						
							| 25 | 22 23 24 | comraddd |  |-  ( A = 0 -> ( A + 1 ) = ( 1 + 0 ) ) | 
						
							| 26 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 27 | 25 26 | eqtrdi |  |-  ( A = 0 -> ( A + 1 ) = 1 ) | 
						
							| 28 | 27 | oveq1d |  |-  ( A = 0 -> ( ( A + 1 ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 29 | 21 28 | breqtrrd |  |-  ( A = 0 -> A < ( ( A + 1 ) ^ 2 ) ) | 
						
							| 30 | 29 | a1i |  |-  ( ph -> ( A = 0 -> A < ( ( A + 1 ) ^ 2 ) ) ) | 
						
							| 31 |  | ax-1rid |  |-  ( A e. RR -> ( A x. 1 ) = A ) | 
						
							| 32 | 31 | adantr |  |-  ( ( A e. RR /\ 0 < A ) -> ( A x. 1 ) = A ) | 
						
							| 33 |  | simpl |  |-  ( ( A e. RR /\ 0 < A ) -> A e. RR ) | 
						
							| 34 |  | 1red |  |-  ( ( A e. RR /\ 0 < A ) -> 1 e. RR ) | 
						
							| 35 | 33 34 | readdcld |  |-  ( ( A e. RR /\ 0 < A ) -> ( A + 1 ) e. RR ) | 
						
							| 36 |  | simpr |  |-  ( ( A e. RR /\ 0 < A ) -> 0 < A ) | 
						
							| 37 |  | 0red |  |-  ( ( A e. RR /\ 0 < A ) -> 0 e. RR ) | 
						
							| 38 |  | ltle |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 39 | 37 33 38 | syl2anc |  |-  ( ( A e. RR /\ 0 < A ) -> ( 0 < A -> 0 <_ A ) ) | 
						
							| 40 | 33 | ltp1d |  |-  ( ( A e. RR /\ 0 < A ) -> A < ( A + 1 ) ) | 
						
							| 41 | 39 40 | jctird |  |-  ( ( A e. RR /\ 0 < A ) -> ( 0 < A -> ( 0 <_ A /\ A < ( A + 1 ) ) ) ) | 
						
							| 42 | 36 41 | mpd |  |-  ( ( A e. RR /\ 0 < A ) -> ( 0 <_ A /\ A < ( A + 1 ) ) ) | 
						
							| 43 | 34 35 | jca |  |-  ( ( A e. RR /\ 0 < A ) -> ( 1 e. RR /\ ( A + 1 ) e. RR ) ) | 
						
							| 44 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 45 | 44 | a1i |  |-  ( ( A e. RR /\ 0 < A ) -> 0 <_ 1 ) | 
						
							| 46 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 47 | 37 33 34 36 | ltadd1dd |  |-  ( ( A e. RR /\ 0 < A ) -> ( 0 + 1 ) < ( A + 1 ) ) | 
						
							| 48 | 46 47 | eqbrtrid |  |-  ( ( A e. RR /\ 0 < A ) -> 1 < ( A + 1 ) ) | 
						
							| 49 | 43 45 48 | jca32 |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( 1 e. RR /\ ( A + 1 ) e. RR ) /\ ( 0 <_ 1 /\ 1 < ( A + 1 ) ) ) ) | 
						
							| 50 |  | ltmul12a |  |-  ( ( ( ( A e. RR /\ ( A + 1 ) e. RR ) /\ ( 0 <_ A /\ A < ( A + 1 ) ) ) /\ ( ( 1 e. RR /\ ( A + 1 ) e. RR ) /\ ( 0 <_ 1 /\ 1 < ( A + 1 ) ) ) ) -> ( A x. 1 ) < ( ( A + 1 ) x. ( A + 1 ) ) ) | 
						
							| 51 | 33 35 42 49 50 | syl1111anc |  |-  ( ( A e. RR /\ 0 < A ) -> ( A x. 1 ) < ( ( A + 1 ) x. ( A + 1 ) ) ) | 
						
							| 52 | 32 51 | eqbrtrrd |  |-  ( ( A e. RR /\ 0 < A ) -> A < ( ( A + 1 ) x. ( A + 1 ) ) ) | 
						
							| 53 | 35 | recnd |  |-  ( ( A e. RR /\ 0 < A ) -> ( A + 1 ) e. CC ) | 
						
							| 54 | 53 | sqvald |  |-  ( ( A e. RR /\ 0 < A ) -> ( ( A + 1 ) ^ 2 ) = ( ( A + 1 ) x. ( A + 1 ) ) ) | 
						
							| 55 | 52 54 | breqtrrd |  |-  ( ( A e. RR /\ 0 < A ) -> A < ( ( A + 1 ) ^ 2 ) ) | 
						
							| 56 | 55 | a1i |  |-  ( ph -> ( ( A e. RR /\ 0 < A ) -> A < ( ( A + 1 ) ^ 2 ) ) ) | 
						
							| 57 | 3 56 | mpand |  |-  ( ph -> ( 0 < A -> A < ( ( A + 1 ) ^ 2 ) ) ) | 
						
							| 58 | 15 30 57 | 3jaod |  |-  ( ph -> ( ( A < 0 \/ A = 0 \/ 0 < A ) -> A < ( ( A + 1 ) ^ 2 ) ) ) | 
						
							| 59 | 5 58 | mpd |  |-  ( ph -> A < ( ( A + 1 ) ^ 2 ) ) | 
						
							| 60 | 3 8 | syl |  |-  ( ph -> ( A + 1 ) e. RR ) | 
						
							| 61 | 60 | resqcld |  |-  ( ph -> ( ( A + 1 ) ^ 2 ) e. RR ) | 
						
							| 62 | 3 61 | posdifd |  |-  ( ph -> ( A < ( ( A + 1 ) ^ 2 ) <-> 0 < ( ( ( A + 1 ) ^ 2 ) - A ) ) ) | 
						
							| 63 | 59 62 | mpbid |  |-  ( ph -> 0 < ( ( ( A + 1 ) ^ 2 ) - A ) ) |