Step |
Hyp |
Ref |
Expression |
1 |
|
3dec.a |
|- A e. NN0 |
2 |
|
3dec.b |
|- B e. NN0 |
3 |
|
dfdec10 |
|- ; ; A B C = ( ( ; 1 0 x. ; A B ) + C ) |
4 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
5 |
4
|
oveq2i |
|- ( ; 1 0 x. ; A B ) = ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) |
6 |
|
10nn |
|- ; 1 0 e. NN |
7 |
6
|
nncni |
|- ; 1 0 e. CC |
8 |
1
|
nn0cni |
|- A e. CC |
9 |
7 8
|
mulcli |
|- ( ; 1 0 x. A ) e. CC |
10 |
2
|
nn0cni |
|- B e. CC |
11 |
7 9 10
|
adddii |
|- ( ; 1 0 x. ( ( ; 1 0 x. A ) + B ) ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) |
12 |
5 11
|
eqtri |
|- ( ; 1 0 x. ; A B ) = ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) |
13 |
7 7 8
|
mulassi |
|- ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ; 1 0 x. ( ; 1 0 x. A ) ) |
14 |
13
|
eqcomi |
|- ( ; 1 0 x. ( ; 1 0 x. A ) ) = ( ( ; 1 0 x. ; 1 0 ) x. A ) |
15 |
7
|
sqvali |
|- ( ; 1 0 ^ 2 ) = ( ; 1 0 x. ; 1 0 ) |
16 |
15
|
eqcomi |
|- ( ; 1 0 x. ; 1 0 ) = ( ; 1 0 ^ 2 ) |
17 |
16
|
oveq1i |
|- ( ( ; 1 0 x. ; 1 0 ) x. A ) = ( ( ; 1 0 ^ 2 ) x. A ) |
18 |
14 17
|
eqtri |
|- ( ; 1 0 x. ( ; 1 0 x. A ) ) = ( ( ; 1 0 ^ 2 ) x. A ) |
19 |
18
|
oveq1i |
|- ( ( ; 1 0 x. ( ; 1 0 x. A ) ) + ( ; 1 0 x. B ) ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) |
20 |
12 19
|
eqtri |
|- ( ; 1 0 x. ; A B ) = ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) |
21 |
20
|
oveq1i |
|- ( ( ; 1 0 x. ; A B ) + C ) = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) |
22 |
3 21
|
eqtri |
|- ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) |