Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
|- .\/ = ( join ` K ) |
2 |
|
3dim0.l |
|- .<_ = ( le ` K ) |
3 |
|
3dim0.a |
|- A = ( Atoms ` K ) |
4 |
|
neeq2 |
|- ( q = u -> ( P =/= q <-> P =/= u ) ) |
5 |
|
oveq2 |
|- ( q = u -> ( P .\/ q ) = ( P .\/ u ) ) |
6 |
5
|
breq2d |
|- ( q = u -> ( r .<_ ( P .\/ q ) <-> r .<_ ( P .\/ u ) ) ) |
7 |
6
|
notbid |
|- ( q = u -> ( -. r .<_ ( P .\/ q ) <-> -. r .<_ ( P .\/ u ) ) ) |
8 |
5
|
oveq1d |
|- ( q = u -> ( ( P .\/ q ) .\/ r ) = ( ( P .\/ u ) .\/ r ) ) |
9 |
8
|
breq2d |
|- ( q = u -> ( s .<_ ( ( P .\/ q ) .\/ r ) <-> s .<_ ( ( P .\/ u ) .\/ r ) ) ) |
10 |
9
|
notbid |
|- ( q = u -> ( -. s .<_ ( ( P .\/ q ) .\/ r ) <-> -. s .<_ ( ( P .\/ u ) .\/ r ) ) ) |
11 |
4 7 10
|
3anbi123d |
|- ( q = u -> ( ( P =/= q /\ -. r .<_ ( P .\/ q ) /\ -. s .<_ ( ( P .\/ q ) .\/ r ) ) <-> ( P =/= u /\ -. r .<_ ( P .\/ u ) /\ -. s .<_ ( ( P .\/ u ) .\/ r ) ) ) ) |
12 |
|
breq1 |
|- ( r = v -> ( r .<_ ( P .\/ u ) <-> v .<_ ( P .\/ u ) ) ) |
13 |
12
|
notbid |
|- ( r = v -> ( -. r .<_ ( P .\/ u ) <-> -. v .<_ ( P .\/ u ) ) ) |
14 |
|
oveq2 |
|- ( r = v -> ( ( P .\/ u ) .\/ r ) = ( ( P .\/ u ) .\/ v ) ) |
15 |
14
|
breq2d |
|- ( r = v -> ( s .<_ ( ( P .\/ u ) .\/ r ) <-> s .<_ ( ( P .\/ u ) .\/ v ) ) ) |
16 |
15
|
notbid |
|- ( r = v -> ( -. s .<_ ( ( P .\/ u ) .\/ r ) <-> -. s .<_ ( ( P .\/ u ) .\/ v ) ) ) |
17 |
13 16
|
3anbi23d |
|- ( r = v -> ( ( P =/= u /\ -. r .<_ ( P .\/ u ) /\ -. s .<_ ( ( P .\/ u ) .\/ r ) ) <-> ( P =/= u /\ -. v .<_ ( P .\/ u ) /\ -. s .<_ ( ( P .\/ u ) .\/ v ) ) ) ) |
18 |
|
breq1 |
|- ( s = w -> ( s .<_ ( ( P .\/ u ) .\/ v ) <-> w .<_ ( ( P .\/ u ) .\/ v ) ) ) |
19 |
18
|
notbid |
|- ( s = w -> ( -. s .<_ ( ( P .\/ u ) .\/ v ) <-> -. w .<_ ( ( P .\/ u ) .\/ v ) ) ) |
20 |
19
|
3anbi3d |
|- ( s = w -> ( ( P =/= u /\ -. v .<_ ( P .\/ u ) /\ -. s .<_ ( ( P .\/ u ) .\/ v ) ) <-> ( P =/= u /\ -. v .<_ ( P .\/ u ) /\ -. w .<_ ( ( P .\/ u ) .\/ v ) ) ) ) |
21 |
11 17 20
|
rspc3ev |
|- ( ( ( u e. A /\ v e. A /\ w e. A ) /\ ( P =/= u /\ -. v .<_ ( P .\/ u ) /\ -. w .<_ ( ( P .\/ u ) .\/ v ) ) ) -> E. q e. A E. r e. A E. s e. A ( P =/= q /\ -. r .<_ ( P .\/ q ) /\ -. s .<_ ( ( P .\/ q ) .\/ r ) ) ) |