Metamath Proof Explorer


Theorem 3dimlem1

Description: Lemma for 3dim1 . (Contributed by NM, 25-Jul-2012)

Ref Expression
Hypotheses 3dim0.j
|- .\/ = ( join ` K )
3dim0.l
|- .<_ = ( le ` K )
3dim0.a
|- A = ( Atoms ` K )
Assertion 3dimlem1
|- ( ( ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ P = Q ) -> ( P =/= R /\ -. S .<_ ( P .\/ R ) /\ -. T .<_ ( ( P .\/ R ) .\/ S ) ) )

Proof

Step Hyp Ref Expression
1 3dim0.j
 |-  .\/ = ( join ` K )
2 3dim0.l
 |-  .<_ = ( le ` K )
3 3dim0.a
 |-  A = ( Atoms ` K )
4 neeq1
 |-  ( P = Q -> ( P =/= R <-> Q =/= R ) )
5 oveq1
 |-  ( P = Q -> ( P .\/ R ) = ( Q .\/ R ) )
6 5 breq2d
 |-  ( P = Q -> ( S .<_ ( P .\/ R ) <-> S .<_ ( Q .\/ R ) ) )
7 6 notbid
 |-  ( P = Q -> ( -. S .<_ ( P .\/ R ) <-> -. S .<_ ( Q .\/ R ) ) )
8 5 oveq1d
 |-  ( P = Q -> ( ( P .\/ R ) .\/ S ) = ( ( Q .\/ R ) .\/ S ) )
9 8 breq2d
 |-  ( P = Q -> ( T .<_ ( ( P .\/ R ) .\/ S ) <-> T .<_ ( ( Q .\/ R ) .\/ S ) ) )
10 9 notbid
 |-  ( P = Q -> ( -. T .<_ ( ( P .\/ R ) .\/ S ) <-> -. T .<_ ( ( Q .\/ R ) .\/ S ) ) )
11 4 7 10 3anbi123d
 |-  ( P = Q -> ( ( P =/= R /\ -. S .<_ ( P .\/ R ) /\ -. T .<_ ( ( P .\/ R ) .\/ S ) ) <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) )
12 11 biimparc
 |-  ( ( ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ P = Q ) -> ( P =/= R /\ -. S .<_ ( P .\/ R ) /\ -. T .<_ ( ( P .\/ R ) .\/ S ) ) )