Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
|- .\/ = ( join ` K ) |
2 |
|
3dim0.l |
|- .<_ = ( le ` K ) |
3 |
|
3dim0.a |
|- A = ( Atoms ` K ) |
4 |
|
simp3l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> P =/= Q ) |
5 |
|
simp22 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> -. S .<_ ( Q .\/ R ) ) |
6 |
1 3
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( Q .\/ P ) ) |
8 |
|
simp3r |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> P .<_ ( Q .\/ R ) ) |
9 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> K e. HL ) |
10 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> P e. A ) |
11 |
|
simp21 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> R e. A ) |
12 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> Q e. A ) |
13 |
2 1 3
|
hlatexchb1 |
|- ( ( K e. HL /\ ( P e. A /\ R e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .<_ ( Q .\/ R ) <-> ( Q .\/ P ) = ( Q .\/ R ) ) ) |
14 |
9 10 11 12 4 13
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> ( P .<_ ( Q .\/ R ) <-> ( Q .\/ P ) = ( Q .\/ R ) ) ) |
15 |
8 14
|
mpbid |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> ( Q .\/ P ) = ( Q .\/ R ) ) |
16 |
7 15
|
eqtrd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( Q .\/ R ) ) |
17 |
16
|
breq2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> ( S .<_ ( P .\/ Q ) <-> S .<_ ( Q .\/ R ) ) ) |
18 |
5 17
|
mtbird |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
19 |
|
simp23 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> -. T .<_ ( ( Q .\/ R ) .\/ S ) ) |
20 |
16
|
oveq1d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ S ) = ( ( Q .\/ R ) .\/ S ) ) |
21 |
20
|
breq2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> ( T .<_ ( ( P .\/ Q ) .\/ S ) <-> T .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
22 |
19 21
|
mtbird |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> -. T .<_ ( ( P .\/ Q ) .\/ S ) ) |
23 |
4 18 22
|
3jca |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ -. S .<_ ( Q .\/ R ) /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) /\ ( P =/= Q /\ P .<_ ( Q .\/ R ) ) ) -> ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( ( P .\/ Q ) .\/ S ) ) ) |