Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
|- .\/ = ( join ` K ) |
2 |
|
3dim0.l |
|- .<_ = ( le ` K ) |
3 |
|
3dim0.a |
|- A = ( Atoms ` K ) |
4 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> P =/= Q ) |
5 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> -. P .<_ ( Q .\/ R ) ) |
6 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> K e. HL ) |
7 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> R e. A ) |
8 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> P e. A ) |
9 |
|
simpl13 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> Q e. A ) |
10 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> Q =/= R ) |
11 |
10
|
necomd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> R =/= Q ) |
12 |
2 1 3
|
hlatexch2 |
|- ( ( K e. HL /\ ( R e. A /\ P e. A /\ Q e. A ) /\ R =/= Q ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( R .\/ Q ) ) ) |
13 |
6 7 8 9 11 12
|
syl131anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( R .\/ Q ) ) ) |
14 |
1 3
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
15 |
6 9 7 14
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
16 |
15
|
breq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( P .<_ ( Q .\/ R ) <-> P .<_ ( R .\/ Q ) ) ) |
17 |
13 16
|
sylibrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( Q .\/ R ) ) ) |
18 |
5 17
|
mtod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> -. R .<_ ( P .\/ Q ) ) |
19 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> -. T .<_ ( ( Q .\/ R ) .\/ S ) ) |
20 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
21 |
6 20
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> K e. Lat ) |
22 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
23 |
22 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
24 |
9 23
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> Q e. ( Base ` K ) ) |
25 |
22 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
26 |
7 25
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> R e. ( Base ` K ) ) |
27 |
22 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
28 |
8 27
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> P e. ( Base ` K ) ) |
29 |
22 1
|
latjrot |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |
30 |
21 24 26 28 29
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |
31 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> P .<_ ( ( Q .\/ R ) .\/ S ) ) |
32 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> S e. A ) |
33 |
22 1 3
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
34 |
6 9 7 33
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
35 |
22 2 1 3
|
hlexchb1 |
|- ( ( K e. HL /\ ( P e. A /\ S e. A /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ -. P .<_ ( Q .\/ R ) ) -> ( P .<_ ( ( Q .\/ R ) .\/ S ) <-> ( ( Q .\/ R ) .\/ P ) = ( ( Q .\/ R ) .\/ S ) ) ) |
36 |
6 8 32 34 5 35
|
syl131anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( P .<_ ( ( Q .\/ R ) .\/ S ) <-> ( ( Q .\/ R ) .\/ P ) = ( ( Q .\/ R ) .\/ S ) ) ) |
37 |
31 36
|
mpbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( Q .\/ R ) .\/ S ) ) |
38 |
30 37
|
eqtr3d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( Q .\/ R ) .\/ S ) ) |
39 |
38
|
breq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( T .<_ ( ( P .\/ Q ) .\/ R ) <-> T .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
40 |
19 39
|
mtbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> -. T .<_ ( ( P .\/ Q ) .\/ R ) ) |
41 |
4 18 40
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. T .<_ ( ( Q .\/ R ) .\/ S ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. T .<_ ( ( P .\/ Q ) .\/ R ) ) ) |