| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3dim0.j |  |-  .\/ = ( join ` K ) | 
						
							| 2 |  | 3dim0.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | 3dim0.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | simp31 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> -. T .<_ ( ( Q .\/ R ) .\/ S ) ) | 
						
							| 5 |  | simp11 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> K e. HL ) | 
						
							| 6 | 5 | hllatd |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> K e. Lat ) | 
						
							| 7 |  | simp13 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> Q e. A ) | 
						
							| 8 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 9 | 8 3 | atbase |  |-  ( Q e. A -> Q e. ( Base ` K ) ) | 
						
							| 10 | 7 9 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> Q e. ( Base ` K ) ) | 
						
							| 11 |  | simp2l |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> R e. A ) | 
						
							| 12 | 8 3 | atbase |  |-  ( R e. A -> R e. ( Base ` K ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> R e. ( Base ` K ) ) | 
						
							| 14 |  | simp12 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> P e. A ) | 
						
							| 15 | 8 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> P e. ( Base ` K ) ) | 
						
							| 17 | 8 1 | latjrot |  |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 18 | 6 10 13 16 17 | syl13anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) | 
						
							| 19 |  | simp33 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> P .<_ ( ( Q .\/ R ) .\/ S ) ) | 
						
							| 20 |  | simp2r |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> S e. A ) | 
						
							| 21 | 8 1 3 | hlatjcl |  |-  ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) | 
						
							| 22 | 5 7 11 21 | syl3anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) | 
						
							| 23 |  | simp32 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> -. P .<_ ( Q .\/ R ) ) | 
						
							| 24 | 8 2 1 3 | hlexchb1 |  |-  ( ( K e. HL /\ ( P e. A /\ S e. A /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ -. P .<_ ( Q .\/ R ) ) -> ( P .<_ ( ( Q .\/ R ) .\/ S ) <-> ( ( Q .\/ R ) .\/ P ) = ( ( Q .\/ R ) .\/ S ) ) ) | 
						
							| 25 | 5 14 20 22 23 24 | syl131anc |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( P .<_ ( ( Q .\/ R ) .\/ S ) <-> ( ( Q .\/ R ) .\/ P ) = ( ( Q .\/ R ) .\/ S ) ) ) | 
						
							| 26 | 19 25 | mpbid |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( Q .\/ R ) .\/ S ) ) | 
						
							| 27 | 18 26 | eqtr3d |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( Q .\/ R ) .\/ S ) ) | 
						
							| 28 | 27 | breq2d |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> ( T .<_ ( ( P .\/ Q ) .\/ R ) <-> T .<_ ( ( Q .\/ R ) .\/ S ) ) ) | 
						
							| 29 | 4 28 | mtbird |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. T .<_ ( ( Q .\/ R ) .\/ S ) /\ -. P .<_ ( Q .\/ R ) /\ P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> -. T .<_ ( ( P .\/ Q ) .\/ R ) ) |