Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
|- .\/ = ( join ` K ) |
2 |
|
3dim0.l |
|- .<_ = ( le ` K ) |
3 |
|
3dim0.a |
|- A = ( Atoms ` K ) |
4 |
|
simp2l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> P =/= Q ) |
5 |
|
simp2r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. P .<_ ( Q .\/ R ) ) |
6 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> K e. HL ) |
7 |
|
simp2l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> R e. A ) |
8 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> P e. A ) |
9 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> Q e. A ) |
10 |
|
simp3l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> Q =/= R ) |
11 |
10
|
necomd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> R =/= Q ) |
12 |
2 1 3
|
hlatexch2 |
|- ( ( K e. HL /\ ( R e. A /\ P e. A /\ Q e. A ) /\ R =/= Q ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( R .\/ Q ) ) ) |
13 |
6 7 8 9 11 12
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( R .\/ Q ) ) ) |
14 |
1 3
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
15 |
6 9 7 14
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
16 |
15
|
breq2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( P .<_ ( Q .\/ R ) <-> P .<_ ( R .\/ Q ) ) ) |
17 |
13 16
|
sylibrd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( Q .\/ R ) ) ) |
18 |
17
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( Q .\/ R ) ) ) |
19 |
5 18
|
mtod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. R .<_ ( P .\/ Q ) ) |
20 |
|
simp11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
21 |
|
simp12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> ( R e. A /\ S e. A ) ) |
22 |
|
simp13r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. S .<_ ( Q .\/ R ) ) |
23 |
|
simp3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. P .<_ ( ( Q .\/ R ) .\/ S ) ) |
24 |
1 2 3
|
3dimlem4a |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) |
25 |
20 21 22 5 23 24
|
syl113anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) |
26 |
4 19 25
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |