Step |
Hyp |
Ref |
Expression |
1 |
|
3dim0.j |
|- .\/ = ( join ` K ) |
2 |
|
3dim0.l |
|- .<_ = ( le ` K ) |
3 |
|
3dim0.a |
|- A = ( Atoms ` K ) |
4 |
|
simp2l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> P =/= Q ) |
5 |
|
simp2r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. P .<_ ( Q .\/ R ) ) |
6 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> K e. HL ) |
7 |
|
simp2l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> R e. A ) |
8 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> P e. A ) |
9 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> Q e. A ) |
10 |
|
simp3l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> Q =/= R ) |
11 |
10
|
necomd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> R =/= Q ) |
12 |
2 1 3
|
hlatexch2 |
|- ( ( K e. HL /\ ( R e. A /\ P e. A /\ Q e. A ) /\ R =/= Q ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( R .\/ Q ) ) ) |
13 |
6 7 8 9 11 12
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( R .\/ Q ) ) ) |
14 |
1 3
|
hlatjcom |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
15 |
6 9 7 14
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( Q .\/ R ) = ( R .\/ Q ) ) |
16 |
15
|
breq2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( P .<_ ( Q .\/ R ) <-> P .<_ ( R .\/ Q ) ) ) |
17 |
13 16
|
sylibrd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( Q .\/ R ) ) ) |
18 |
17
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> ( R .<_ ( P .\/ Q ) -> P .<_ ( Q .\/ R ) ) ) |
19 |
5 18
|
mtod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. R .<_ ( P .\/ Q ) ) |
20 |
|
simp3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. P .<_ ( ( Q .\/ R ) .\/ S ) ) |
21 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
22 |
6 21
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> K e. Lat ) |
23 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
24 |
23 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
25 |
9 24
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> Q e. ( Base ` K ) ) |
26 |
23 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
27 |
7 26
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> R e. ( Base ` K ) ) |
28 |
23 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
29 |
8 28
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> P e. ( Base ` K ) ) |
30 |
23 1
|
latjrot |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |
31 |
22 25 27 29 30
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ P ) = ( ( P .\/ Q ) .\/ R ) ) |
32 |
31
|
breq2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( S .<_ ( ( Q .\/ R ) .\/ P ) <-> S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
33 |
|
simp2r |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> S e. A ) |
34 |
23 1 3
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ R e. A ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
35 |
6 9 7 34
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( Q .\/ R ) e. ( Base ` K ) ) |
36 |
|
simp3r |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> -. S .<_ ( Q .\/ R ) ) |
37 |
23 2 1 3
|
hlexch1 |
|- ( ( K e. HL /\ ( S e. A /\ P e. A /\ ( Q .\/ R ) e. ( Base ` K ) ) /\ -. S .<_ ( Q .\/ R ) ) -> ( S .<_ ( ( Q .\/ R ) .\/ P ) -> P .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
38 |
6 33 8 35 36 37
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( S .<_ ( ( Q .\/ R ) .\/ P ) -> P .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
39 |
32 38
|
sylbird |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) -> P .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
40 |
39
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) -> P .<_ ( ( Q .\/ R ) .\/ S ) ) ) |
41 |
20 40
|
mtod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) |
42 |
4 19 41
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) /\ ( P =/= Q /\ -. P .<_ ( Q .\/ R ) ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |