Step |
Hyp |
Ref |
Expression |
1 |
|
3z |
|- 3 e. ZZ |
2 |
1
|
a1i |
|- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 e. ZZ ) |
3 |
|
fzfid |
|- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> ( 0 ... N ) e. Fin ) |
4 |
|
ffvelrn |
|- ( ( F : ( 0 ... N ) --> ZZ /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. ZZ ) |
5 |
4
|
adantll |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. ZZ ) |
6 |
|
10nn |
|- ; 1 0 e. NN |
7 |
6
|
nnzi |
|- ; 1 0 e. ZZ |
8 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
9 |
8
|
adantl |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
10 |
|
zexpcl |
|- ( ( ; 1 0 e. ZZ /\ k e. NN0 ) -> ( ; 1 0 ^ k ) e. ZZ ) |
11 |
7 9 10
|
sylancr |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ; 1 0 ^ k ) e. ZZ ) |
12 |
5 11
|
zmulcld |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ ) |
13 |
3 12
|
fsumzcl |
|- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ ) |
14 |
3 5
|
fsumzcl |
|- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( F ` k ) e. ZZ ) |
15 |
12 5
|
zsubcld |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) e. ZZ ) |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
6
|
nncni |
|- ; 1 0 e. CC |
18 |
16 17
|
negsubdi2i |
|- -u ( 1 - ; 1 0 ) = ( ; 1 0 - 1 ) |
19 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
20 |
19
|
eqcomi |
|- ; 1 0 = ( 9 + 1 ) |
21 |
20
|
oveq1i |
|- ( ; 1 0 - 1 ) = ( ( 9 + 1 ) - 1 ) |
22 |
|
9cn |
|- 9 e. CC |
23 |
22 16
|
pncan3oi |
|- ( ( 9 + 1 ) - 1 ) = 9 |
24 |
18 21 23
|
3eqtri |
|- -u ( 1 - ; 1 0 ) = 9 |
25 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
26 |
24 25
|
eqtr4i |
|- -u ( 1 - ; 1 0 ) = ( 3 x. 3 ) |
27 |
17
|
a1i |
|- ( k e. NN0 -> ; 1 0 e. CC ) |
28 |
|
1re |
|- 1 e. RR |
29 |
|
1lt10 |
|- 1 < ; 1 0 |
30 |
28 29
|
gtneii |
|- ; 1 0 =/= 1 |
31 |
30
|
a1i |
|- ( k e. NN0 -> ; 1 0 =/= 1 ) |
32 |
|
id |
|- ( k e. NN0 -> k e. NN0 ) |
33 |
27 31 32
|
geoser |
|- ( k e. NN0 -> sum_ j e. ( 0 ... ( k - 1 ) ) ( ; 1 0 ^ j ) = ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) ) |
34 |
|
fzfid |
|- ( k e. NN0 -> ( 0 ... ( k - 1 ) ) e. Fin ) |
35 |
|
elfznn0 |
|- ( j e. ( 0 ... ( k - 1 ) ) -> j e. NN0 ) |
36 |
35
|
adantl |
|- ( ( k e. NN0 /\ j e. ( 0 ... ( k - 1 ) ) ) -> j e. NN0 ) |
37 |
|
zexpcl |
|- ( ( ; 1 0 e. ZZ /\ j e. NN0 ) -> ( ; 1 0 ^ j ) e. ZZ ) |
38 |
7 36 37
|
sylancr |
|- ( ( k e. NN0 /\ j e. ( 0 ... ( k - 1 ) ) ) -> ( ; 1 0 ^ j ) e. ZZ ) |
39 |
34 38
|
fsumzcl |
|- ( k e. NN0 -> sum_ j e. ( 0 ... ( k - 1 ) ) ( ; 1 0 ^ j ) e. ZZ ) |
40 |
33 39
|
eqeltrrd |
|- ( k e. NN0 -> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) |
41 |
|
1z |
|- 1 e. ZZ |
42 |
|
zsubcl |
|- ( ( 1 e. ZZ /\ ; 1 0 e. ZZ ) -> ( 1 - ; 1 0 ) e. ZZ ) |
43 |
41 7 42
|
mp2an |
|- ( 1 - ; 1 0 ) e. ZZ |
44 |
28 29
|
ltneii |
|- 1 =/= ; 1 0 |
45 |
16 17
|
subeq0i |
|- ( ( 1 - ; 1 0 ) = 0 <-> 1 = ; 1 0 ) |
46 |
45
|
necon3bii |
|- ( ( 1 - ; 1 0 ) =/= 0 <-> 1 =/= ; 1 0 ) |
47 |
44 46
|
mpbir |
|- ( 1 - ; 1 0 ) =/= 0 |
48 |
7 32 10
|
sylancr |
|- ( k e. NN0 -> ( ; 1 0 ^ k ) e. ZZ ) |
49 |
|
zsubcl |
|- ( ( 1 e. ZZ /\ ( ; 1 0 ^ k ) e. ZZ ) -> ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) |
50 |
41 48 49
|
sylancr |
|- ( k e. NN0 -> ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) |
51 |
|
dvdsval2 |
|- ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( 1 - ; 1 0 ) =/= 0 /\ ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) <-> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) ) |
52 |
43 47 50 51
|
mp3an12i |
|- ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) <-> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) ) |
53 |
40 52
|
mpbird |
|- ( k e. NN0 -> ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) ) |
54 |
48
|
zcnd |
|- ( k e. NN0 -> ( ; 1 0 ^ k ) e. CC ) |
55 |
|
negsubdi2 |
|- ( ( ( ; 1 0 ^ k ) e. CC /\ 1 e. CC ) -> -u ( ( ; 1 0 ^ k ) - 1 ) = ( 1 - ( ; 1 0 ^ k ) ) ) |
56 |
54 16 55
|
sylancl |
|- ( k e. NN0 -> -u ( ( ; 1 0 ^ k ) - 1 ) = ( 1 - ( ; 1 0 ^ k ) ) ) |
57 |
53 56
|
breqtrrd |
|- ( k e. NN0 -> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) |
58 |
|
peano2zm |
|- ( ( ; 1 0 ^ k ) e. ZZ -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) |
59 |
48 58
|
syl |
|- ( k e. NN0 -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) |
60 |
|
dvdsnegb |
|- ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) ) |
61 |
43 59 60
|
sylancr |
|- ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) ) |
62 |
57 61
|
mpbird |
|- ( k e. NN0 -> ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) |
63 |
|
negdvdsb |
|- ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) ) |
64 |
43 59 63
|
sylancr |
|- ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) ) |
65 |
62 64
|
mpbid |
|- ( k e. NN0 -> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) |
66 |
26 65
|
eqbrtrrid |
|- ( k e. NN0 -> ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) ) |
67 |
|
muldvds1 |
|- ( ( 3 e. ZZ /\ 3 e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) ) |
68 |
1 1 59 67
|
mp3an12i |
|- ( k e. NN0 -> ( ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) ) |
69 |
66 68
|
mpd |
|- ( k e. NN0 -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) |
70 |
9 69
|
syl |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) |
71 |
11 58
|
syl |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) |
72 |
|
dvdsmultr2 |
|- ( ( 3 e. ZZ /\ ( F ` k ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( 3 || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) ) |
73 |
1 5 71 72
|
mp3an2i |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( 3 || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) ) |
74 |
70 73
|
mpd |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) |
75 |
5
|
zcnd |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. CC ) |
76 |
11
|
zcnd |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ; 1 0 ^ k ) e. CC ) |
77 |
75 76
|
muls1d |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) = ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) |
78 |
74 77
|
breqtrd |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) |
79 |
3 2 15 78
|
fsumdvds |
|- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 || sum_ k e. ( 0 ... N ) ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) |
80 |
12
|
zcnd |
|- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. CC ) |
81 |
3 80 75
|
fsumsub |
|- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) = ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |
82 |
79 81
|
breqtrd |
|- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 || ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |
83 |
|
dvdssub2 |
|- ( ( ( 3 e. ZZ /\ sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ /\ sum_ k e. ( 0 ... N ) ( F ` k ) e. ZZ ) /\ 3 || ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) -> ( 3 || sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) <-> 3 || sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |
84 |
2 13 14 82 83
|
syl31anc |
|- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> ( 3 || sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) <-> 3 || sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |