| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3z |  |-  3 e. ZZ | 
						
							| 2 | 1 | a1i |  |-  ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 e. ZZ ) | 
						
							| 3 |  | fzfid |  |-  ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> ( 0 ... N ) e. Fin ) | 
						
							| 4 |  | ffvelcdm |  |-  ( ( F : ( 0 ... N ) --> ZZ /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. ZZ ) | 
						
							| 5 | 4 | adantll |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. ZZ ) | 
						
							| 6 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 7 | 6 | nnzi |  |-  ; 1 0 e. ZZ | 
						
							| 8 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) | 
						
							| 10 |  | zexpcl |  |-  ( ( ; 1 0 e. ZZ /\ k e. NN0 ) -> ( ; 1 0 ^ k ) e. ZZ ) | 
						
							| 11 | 7 9 10 | sylancr |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ; 1 0 ^ k ) e. ZZ ) | 
						
							| 12 | 5 11 | zmulcld |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ ) | 
						
							| 13 | 3 12 | fsumzcl |  |-  ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ ) | 
						
							| 14 | 3 5 | fsumzcl |  |-  ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( F ` k ) e. ZZ ) | 
						
							| 15 | 12 5 | zsubcld |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) e. ZZ ) | 
						
							| 16 |  | ax-1cn |  |-  1 e. CC | 
						
							| 17 | 6 | nncni |  |-  ; 1 0 e. CC | 
						
							| 18 | 16 17 | negsubdi2i |  |-  -u ( 1 - ; 1 0 ) = ( ; 1 0 - 1 ) | 
						
							| 19 |  | 9p1e10 |  |-  ( 9 + 1 ) = ; 1 0 | 
						
							| 20 | 19 | eqcomi |  |-  ; 1 0 = ( 9 + 1 ) | 
						
							| 21 | 20 | oveq1i |  |-  ( ; 1 0 - 1 ) = ( ( 9 + 1 ) - 1 ) | 
						
							| 22 |  | 9cn |  |-  9 e. CC | 
						
							| 23 | 22 16 | pncan3oi |  |-  ( ( 9 + 1 ) - 1 ) = 9 | 
						
							| 24 | 18 21 23 | 3eqtri |  |-  -u ( 1 - ; 1 0 ) = 9 | 
						
							| 25 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 26 | 24 25 | eqtr4i |  |-  -u ( 1 - ; 1 0 ) = ( 3 x. 3 ) | 
						
							| 27 | 17 | a1i |  |-  ( k e. NN0 -> ; 1 0 e. CC ) | 
						
							| 28 |  | 1re |  |-  1 e. RR | 
						
							| 29 |  | 1lt10 |  |-  1 < ; 1 0 | 
						
							| 30 | 28 29 | gtneii |  |-  ; 1 0 =/= 1 | 
						
							| 31 | 30 | a1i |  |-  ( k e. NN0 -> ; 1 0 =/= 1 ) | 
						
							| 32 |  | id |  |-  ( k e. NN0 -> k e. NN0 ) | 
						
							| 33 | 27 31 32 | geoser |  |-  ( k e. NN0 -> sum_ j e. ( 0 ... ( k - 1 ) ) ( ; 1 0 ^ j ) = ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) ) | 
						
							| 34 |  | fzfid |  |-  ( k e. NN0 -> ( 0 ... ( k - 1 ) ) e. Fin ) | 
						
							| 35 |  | elfznn0 |  |-  ( j e. ( 0 ... ( k - 1 ) ) -> j e. NN0 ) | 
						
							| 36 | 35 | adantl |  |-  ( ( k e. NN0 /\ j e. ( 0 ... ( k - 1 ) ) ) -> j e. NN0 ) | 
						
							| 37 |  | zexpcl |  |-  ( ( ; 1 0 e. ZZ /\ j e. NN0 ) -> ( ; 1 0 ^ j ) e. ZZ ) | 
						
							| 38 | 7 36 37 | sylancr |  |-  ( ( k e. NN0 /\ j e. ( 0 ... ( k - 1 ) ) ) -> ( ; 1 0 ^ j ) e. ZZ ) | 
						
							| 39 | 34 38 | fsumzcl |  |-  ( k e. NN0 -> sum_ j e. ( 0 ... ( k - 1 ) ) ( ; 1 0 ^ j ) e. ZZ ) | 
						
							| 40 | 33 39 | eqeltrrd |  |-  ( k e. NN0 -> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) | 
						
							| 41 |  | 1z |  |-  1 e. ZZ | 
						
							| 42 |  | zsubcl |  |-  ( ( 1 e. ZZ /\ ; 1 0 e. ZZ ) -> ( 1 - ; 1 0 ) e. ZZ ) | 
						
							| 43 | 41 7 42 | mp2an |  |-  ( 1 - ; 1 0 ) e. ZZ | 
						
							| 44 | 28 29 | ltneii |  |-  1 =/= ; 1 0 | 
						
							| 45 | 16 17 | subeq0i |  |-  ( ( 1 - ; 1 0 ) = 0 <-> 1 = ; 1 0 ) | 
						
							| 46 | 45 | necon3bii |  |-  ( ( 1 - ; 1 0 ) =/= 0 <-> 1 =/= ; 1 0 ) | 
						
							| 47 | 44 46 | mpbir |  |-  ( 1 - ; 1 0 ) =/= 0 | 
						
							| 48 | 7 32 10 | sylancr |  |-  ( k e. NN0 -> ( ; 1 0 ^ k ) e. ZZ ) | 
						
							| 49 |  | zsubcl |  |-  ( ( 1 e. ZZ /\ ( ; 1 0 ^ k ) e. ZZ ) -> ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) | 
						
							| 50 | 41 48 49 | sylancr |  |-  ( k e. NN0 -> ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) | 
						
							| 51 |  | dvdsval2 |  |-  ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( 1 - ; 1 0 ) =/= 0 /\ ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) <-> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) ) | 
						
							| 52 | 43 47 50 51 | mp3an12i |  |-  ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) <-> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) ) | 
						
							| 53 | 40 52 | mpbird |  |-  ( k e. NN0 -> ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) ) | 
						
							| 54 | 48 | zcnd |  |-  ( k e. NN0 -> ( ; 1 0 ^ k ) e. CC ) | 
						
							| 55 |  | negsubdi2 |  |-  ( ( ( ; 1 0 ^ k ) e. CC /\ 1 e. CC ) -> -u ( ( ; 1 0 ^ k ) - 1 ) = ( 1 - ( ; 1 0 ^ k ) ) ) | 
						
							| 56 | 54 16 55 | sylancl |  |-  ( k e. NN0 -> -u ( ( ; 1 0 ^ k ) - 1 ) = ( 1 - ( ; 1 0 ^ k ) ) ) | 
						
							| 57 | 53 56 | breqtrrd |  |-  ( k e. NN0 -> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) | 
						
							| 58 |  | peano2zm |  |-  ( ( ; 1 0 ^ k ) e. ZZ -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) | 
						
							| 59 | 48 58 | syl |  |-  ( k e. NN0 -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) | 
						
							| 60 |  | dvdsnegb |  |-  ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) ) | 
						
							| 61 | 43 59 60 | sylancr |  |-  ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) ) | 
						
							| 62 | 57 61 | mpbird |  |-  ( k e. NN0 -> ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) | 
						
							| 63 |  | negdvdsb |  |-  ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) ) | 
						
							| 64 | 43 59 63 | sylancr |  |-  ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) ) | 
						
							| 65 | 62 64 | mpbid |  |-  ( k e. NN0 -> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) | 
						
							| 66 | 26 65 | eqbrtrrid |  |-  ( k e. NN0 -> ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) ) | 
						
							| 67 |  | muldvds1 |  |-  ( ( 3 e. ZZ /\ 3 e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) ) | 
						
							| 68 | 1 1 59 67 | mp3an12i |  |-  ( k e. NN0 -> ( ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) ) | 
						
							| 69 | 66 68 | mpd |  |-  ( k e. NN0 -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) | 
						
							| 70 | 9 69 | syl |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) | 
						
							| 71 | 11 58 | syl |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) | 
						
							| 72 |  | dvdsmultr2 |  |-  ( ( 3 e. ZZ /\ ( F ` k ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( 3 || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) ) | 
						
							| 73 | 1 5 71 72 | mp3an2i |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( 3 || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) ) | 
						
							| 74 | 70 73 | mpd |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) | 
						
							| 75 | 5 | zcnd |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. CC ) | 
						
							| 76 | 11 | zcnd |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ; 1 0 ^ k ) e. CC ) | 
						
							| 77 | 75 76 | muls1d |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) = ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) | 
						
							| 78 | 74 77 | breqtrd |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) | 
						
							| 79 | 3 2 15 78 | fsumdvds |  |-  ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 || sum_ k e. ( 0 ... N ) ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) | 
						
							| 80 | 12 | zcnd |  |-  ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. CC ) | 
						
							| 81 | 3 80 75 | fsumsub |  |-  ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) = ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) | 
						
							| 82 | 79 81 | breqtrd |  |-  ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 || ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) | 
						
							| 83 |  | dvdssub2 |  |-  ( ( ( 3 e. ZZ /\ sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ /\ sum_ k e. ( 0 ... N ) ( F ` k ) e. ZZ ) /\ 3 || ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) -> ( 3 || sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) <-> 3 || sum_ k e. ( 0 ... N ) ( F ` k ) ) ) | 
						
							| 84 | 2 13 14 82 83 | syl31anc |  |-  ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> ( 3 || sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) <-> 3 || sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |