| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3dvdsdec.a |  |-  A e. NN0 | 
						
							| 2 |  | 3dvdsdec.b |  |-  B e. NN0 | 
						
							| 3 |  | 3dvds2dec.c |  |-  C e. NN0 | 
						
							| 4 | 1 2 | 3dec |  |-  ; ; A B C = ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) | 
						
							| 5 |  | sq10e99m1 |  |-  ( ; 1 0 ^ 2 ) = ( ; 9 9 + 1 ) | 
						
							| 6 | 5 | oveq1i |  |-  ( ( ; 1 0 ^ 2 ) x. A ) = ( ( ; 9 9 + 1 ) x. A ) | 
						
							| 7 |  | 9nn0 |  |-  9 e. NN0 | 
						
							| 8 | 7 7 | deccl |  |-  ; 9 9 e. NN0 | 
						
							| 9 | 8 | nn0cni |  |-  ; 9 9 e. CC | 
						
							| 10 |  | ax-1cn |  |-  1 e. CC | 
						
							| 11 | 1 | nn0cni |  |-  A e. CC | 
						
							| 12 | 9 10 11 | adddiri |  |-  ( ( ; 9 9 + 1 ) x. A ) = ( ( ; 9 9 x. A ) + ( 1 x. A ) ) | 
						
							| 13 | 11 | mullidi |  |-  ( 1 x. A ) = A | 
						
							| 14 | 13 | oveq2i |  |-  ( ( ; 9 9 x. A ) + ( 1 x. A ) ) = ( ( ; 9 9 x. A ) + A ) | 
						
							| 15 | 6 12 14 | 3eqtri |  |-  ( ( ; 1 0 ^ 2 ) x. A ) = ( ( ; 9 9 x. A ) + A ) | 
						
							| 16 |  | 9p1e10 |  |-  ( 9 + 1 ) = ; 1 0 | 
						
							| 17 | 16 | eqcomi |  |-  ; 1 0 = ( 9 + 1 ) | 
						
							| 18 | 17 | oveq1i |  |-  ( ; 1 0 x. B ) = ( ( 9 + 1 ) x. B ) | 
						
							| 19 |  | 9cn |  |-  9 e. CC | 
						
							| 20 | 2 | nn0cni |  |-  B e. CC | 
						
							| 21 | 19 10 20 | adddiri |  |-  ( ( 9 + 1 ) x. B ) = ( ( 9 x. B ) + ( 1 x. B ) ) | 
						
							| 22 | 20 | mullidi |  |-  ( 1 x. B ) = B | 
						
							| 23 | 22 | oveq2i |  |-  ( ( 9 x. B ) + ( 1 x. B ) ) = ( ( 9 x. B ) + B ) | 
						
							| 24 | 18 21 23 | 3eqtri |  |-  ( ; 1 0 x. B ) = ( ( 9 x. B ) + B ) | 
						
							| 25 | 15 24 | oveq12i |  |-  ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) = ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) | 
						
							| 26 | 25 | oveq1i |  |-  ( ( ( ( ; 1 0 ^ 2 ) x. A ) + ( ; 1 0 x. B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) | 
						
							| 27 | 9 11 | mulcli |  |-  ( ; 9 9 x. A ) e. CC | 
						
							| 28 | 19 20 | mulcli |  |-  ( 9 x. B ) e. CC | 
						
							| 29 |  | add4 |  |-  ( ( ( ( ; 9 9 x. A ) e. CC /\ A e. CC ) /\ ( ( 9 x. B ) e. CC /\ B e. CC ) ) -> ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) = ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( ( ( ; 9 9 x. A ) e. CC /\ A e. CC ) /\ ( ( 9 x. B ) e. CC /\ B e. CC ) ) -> ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) ) | 
						
							| 31 | 27 11 28 20 30 | mp4an |  |-  ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) | 
						
							| 32 | 27 28 | addcli |  |-  ( ( ; 9 9 x. A ) + ( 9 x. B ) ) e. CC | 
						
							| 33 | 11 20 | addcli |  |-  ( A + B ) e. CC | 
						
							| 34 | 3 | nn0cni |  |-  C e. CC | 
						
							| 35 | 32 33 34 | addassi |  |-  ( ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( A + B ) ) + C ) = ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( ( A + B ) + C ) ) | 
						
							| 36 |  | 9t11e99 |  |-  ( 9 x. ; 1 1 ) = ; 9 9 | 
						
							| 37 | 36 | eqcomi |  |-  ; 9 9 = ( 9 x. ; 1 1 ) | 
						
							| 38 | 37 | oveq1i |  |-  ( ; 9 9 x. A ) = ( ( 9 x. ; 1 1 ) x. A ) | 
						
							| 39 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 40 | 39 39 | deccl |  |-  ; 1 1 e. NN0 | 
						
							| 41 | 40 | nn0cni |  |-  ; 1 1 e. CC | 
						
							| 42 | 19 41 11 | mulassi |  |-  ( ( 9 x. ; 1 1 ) x. A ) = ( 9 x. ( ; 1 1 x. A ) ) | 
						
							| 43 | 38 42 | eqtri |  |-  ( ; 9 9 x. A ) = ( 9 x. ( ; 1 1 x. A ) ) | 
						
							| 44 | 43 | oveq1i |  |-  ( ( ; 9 9 x. A ) + ( 9 x. B ) ) = ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) | 
						
							| 45 | 41 11 | mulcli |  |-  ( ; 1 1 x. A ) e. CC | 
						
							| 46 | 19 45 20 | adddii |  |-  ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) | 
						
							| 47 | 46 | eqcomi |  |-  ( ( 9 x. ( ; 1 1 x. A ) ) + ( 9 x. B ) ) = ( 9 x. ( ( ; 1 1 x. A ) + B ) ) | 
						
							| 48 |  | 3t3e9 |  |-  ( 3 x. 3 ) = 9 | 
						
							| 49 | 48 | eqcomi |  |-  9 = ( 3 x. 3 ) | 
						
							| 50 | 49 | oveq1i |  |-  ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( ( 3 x. 3 ) x. ( ( ; 1 1 x. A ) + B ) ) | 
						
							| 51 |  | 3cn |  |-  3 e. CC | 
						
							| 52 | 45 20 | addcli |  |-  ( ( ; 1 1 x. A ) + B ) e. CC | 
						
							| 53 | 51 51 52 | mulassi |  |-  ( ( 3 x. 3 ) x. ( ( ; 1 1 x. A ) + B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) | 
						
							| 54 | 50 53 | eqtri |  |-  ( 9 x. ( ( ; 1 1 x. A ) + B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) | 
						
							| 55 | 44 47 54 | 3eqtri |  |-  ( ( ; 9 9 x. A ) + ( 9 x. B ) ) = ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) | 
						
							| 56 | 55 | oveq1i |  |-  ( ( ( ; 9 9 x. A ) + ( 9 x. B ) ) + ( ( A + B ) + C ) ) = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) | 
						
							| 57 | 31 35 56 | 3eqtri |  |-  ( ( ( ( ; 9 9 x. A ) + A ) + ( ( 9 x. B ) + B ) ) + C ) = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) | 
						
							| 58 | 4 26 57 | 3eqtri |  |-  ; ; A B C = ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) | 
						
							| 59 | 58 | breq2i |  |-  ( 3 || ; ; A B C <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) | 
						
							| 60 |  | 3z |  |-  3 e. ZZ | 
						
							| 61 | 1 | nn0zi |  |-  A e. ZZ | 
						
							| 62 | 2 | nn0zi |  |-  B e. ZZ | 
						
							| 63 |  | zaddcl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) | 
						
							| 64 | 61 62 63 | mp2an |  |-  ( A + B ) e. ZZ | 
						
							| 65 | 3 | nn0zi |  |-  C e. ZZ | 
						
							| 66 |  | zaddcl |  |-  ( ( ( A + B ) e. ZZ /\ C e. ZZ ) -> ( ( A + B ) + C ) e. ZZ ) | 
						
							| 67 | 64 65 66 | mp2an |  |-  ( ( A + B ) + C ) e. ZZ | 
						
							| 68 | 40 | nn0zi |  |-  ; 1 1 e. ZZ | 
						
							| 69 |  | zmulcl |  |-  ( ( ; 1 1 e. ZZ /\ A e. ZZ ) -> ( ; 1 1 x. A ) e. ZZ ) | 
						
							| 70 | 68 61 69 | mp2an |  |-  ( ; 1 1 x. A ) e. ZZ | 
						
							| 71 |  | zaddcl |  |-  ( ( ( ; 1 1 x. A ) e. ZZ /\ B e. ZZ ) -> ( ( ; 1 1 x. A ) + B ) e. ZZ ) | 
						
							| 72 | 70 62 71 | mp2an |  |-  ( ( ; 1 1 x. A ) + B ) e. ZZ | 
						
							| 73 |  | zmulcl |  |-  ( ( 3 e. ZZ /\ ( ( ; 1 1 x. A ) + B ) e. ZZ ) -> ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) | 
						
							| 74 | 60 72 73 | mp2an |  |-  ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ | 
						
							| 75 |  | zmulcl |  |-  ( ( 3 e. ZZ /\ ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) -> ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ ) | 
						
							| 76 | 60 74 75 | mp2an |  |-  ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ | 
						
							| 77 |  | dvdsmul1 |  |-  ( ( 3 e. ZZ /\ ( 3 x. ( ( ; 1 1 x. A ) + B ) ) e. ZZ ) -> 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) | 
						
							| 78 | 60 74 77 | mp2an |  |-  3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) | 
						
							| 79 | 76 78 | pm3.2i |  |-  ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ /\ 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) | 
						
							| 80 |  | dvdsadd2b |  |-  ( ( 3 e. ZZ /\ ( ( A + B ) + C ) e. ZZ /\ ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) e. ZZ /\ 3 || ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) ) ) -> ( 3 || ( ( A + B ) + C ) <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) ) | 
						
							| 81 | 60 67 79 80 | mp3an |  |-  ( 3 || ( ( A + B ) + C ) <-> 3 || ( ( 3 x. ( 3 x. ( ( ; 1 1 x. A ) + B ) ) ) + ( ( A + B ) + C ) ) ) | 
						
							| 82 | 59 81 | bitr4i |  |-  ( 3 || ; ; A B C <-> 3 || ( ( A + B ) + C ) ) |