Step |
Hyp |
Ref |
Expression |
1 |
|
3dvdsdec.a |
|- A e. NN0 |
2 |
|
3dvdsdec.b |
|- B e. NN0 |
3 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
4 |
|
9p1e10 |
|- ( 9 + 1 ) = ; 1 0 |
5 |
4
|
eqcomi |
|- ; 1 0 = ( 9 + 1 ) |
6 |
5
|
oveq1i |
|- ( ; 1 0 x. A ) = ( ( 9 + 1 ) x. A ) |
7 |
|
9cn |
|- 9 e. CC |
8 |
|
ax-1cn |
|- 1 e. CC |
9 |
1
|
nn0cni |
|- A e. CC |
10 |
7 8 9
|
adddiri |
|- ( ( 9 + 1 ) x. A ) = ( ( 9 x. A ) + ( 1 x. A ) ) |
11 |
9
|
mulid2i |
|- ( 1 x. A ) = A |
12 |
11
|
oveq2i |
|- ( ( 9 x. A ) + ( 1 x. A ) ) = ( ( 9 x. A ) + A ) |
13 |
6 10 12
|
3eqtri |
|- ( ; 1 0 x. A ) = ( ( 9 x. A ) + A ) |
14 |
13
|
oveq1i |
|- ( ( ; 1 0 x. A ) + B ) = ( ( ( 9 x. A ) + A ) + B ) |
15 |
7 9
|
mulcli |
|- ( 9 x. A ) e. CC |
16 |
2
|
nn0cni |
|- B e. CC |
17 |
15 9 16
|
addassi |
|- ( ( ( 9 x. A ) + A ) + B ) = ( ( 9 x. A ) + ( A + B ) ) |
18 |
3 14 17
|
3eqtri |
|- ; A B = ( ( 9 x. A ) + ( A + B ) ) |
19 |
18
|
breq2i |
|- ( 3 || ; A B <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) |
20 |
|
3z |
|- 3 e. ZZ |
21 |
1
|
nn0zi |
|- A e. ZZ |
22 |
2
|
nn0zi |
|- B e. ZZ |
23 |
|
zaddcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + B ) e. ZZ ) |
24 |
21 22 23
|
mp2an |
|- ( A + B ) e. ZZ |
25 |
|
9nn |
|- 9 e. NN |
26 |
25
|
nnzi |
|- 9 e. ZZ |
27 |
|
zmulcl |
|- ( ( 9 e. ZZ /\ A e. ZZ ) -> ( 9 x. A ) e. ZZ ) |
28 |
26 21 27
|
mp2an |
|- ( 9 x. A ) e. ZZ |
29 |
|
zmulcl |
|- ( ( 3 e. ZZ /\ A e. ZZ ) -> ( 3 x. A ) e. ZZ ) |
30 |
20 21 29
|
mp2an |
|- ( 3 x. A ) e. ZZ |
31 |
|
dvdsmul1 |
|- ( ( 3 e. ZZ /\ ( 3 x. A ) e. ZZ ) -> 3 || ( 3 x. ( 3 x. A ) ) ) |
32 |
20 30 31
|
mp2an |
|- 3 || ( 3 x. ( 3 x. A ) ) |
33 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
34 |
33
|
eqcomi |
|- 9 = ( 3 x. 3 ) |
35 |
34
|
oveq1i |
|- ( 9 x. A ) = ( ( 3 x. 3 ) x. A ) |
36 |
|
3cn |
|- 3 e. CC |
37 |
36 36 9
|
mulassi |
|- ( ( 3 x. 3 ) x. A ) = ( 3 x. ( 3 x. A ) ) |
38 |
35 37
|
eqtri |
|- ( 9 x. A ) = ( 3 x. ( 3 x. A ) ) |
39 |
32 38
|
breqtrri |
|- 3 || ( 9 x. A ) |
40 |
28 39
|
pm3.2i |
|- ( ( 9 x. A ) e. ZZ /\ 3 || ( 9 x. A ) ) |
41 |
|
dvdsadd2b |
|- ( ( 3 e. ZZ /\ ( A + B ) e. ZZ /\ ( ( 9 x. A ) e. ZZ /\ 3 || ( 9 x. A ) ) ) -> ( 3 || ( A + B ) <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) ) |
42 |
20 24 40 41
|
mp3an |
|- ( 3 || ( A + B ) <-> 3 || ( ( 9 x. A ) + ( A + B ) ) ) |
43 |
19 42
|
bitr4i |
|- ( 3 || ; A B <-> 3 || ( A + B ) ) |