Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|- ( X e. { A , B } -> ( X = A \/ X = B ) ) |
2 |
|
elpri |
|- ( Y e. { A , B } -> ( Y = A \/ Y = B ) ) |
3 |
|
elpri |
|- ( Z e. { A , B } -> ( Z = A \/ Z = B ) ) |
4 |
|
eqtr3 |
|- ( ( Z = A /\ X = A ) -> Z = X ) |
5 |
|
eqneqall |
|- ( Z = X -> ( Z =/= X -> Y = Z ) ) |
6 |
4 5
|
syl |
|- ( ( Z = A /\ X = A ) -> ( Z =/= X -> Y = Z ) ) |
7 |
6
|
adantld |
|- ( ( Z = A /\ X = A ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
8 |
7
|
ex |
|- ( Z = A -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
9 |
8
|
a1d |
|- ( Z = A -> ( ( Y = A \/ Y = B ) -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
10 |
|
eqtr3 |
|- ( ( Y = A /\ X = A ) -> Y = X ) |
11 |
|
eqneqall |
|- ( Y = X -> ( Y =/= X -> ( Z =/= X -> Y = Z ) ) ) |
12 |
10 11
|
syl |
|- ( ( Y = A /\ X = A ) -> ( Y =/= X -> ( Z =/= X -> Y = Z ) ) ) |
13 |
12
|
impd |
|- ( ( Y = A /\ X = A ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
14 |
13
|
ex |
|- ( Y = A -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
15 |
14
|
a1d |
|- ( Y = A -> ( Z = B -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
16 |
|
eqtr3 |
|- ( ( Y = B /\ Z = B ) -> Y = Z ) |
17 |
16
|
2a1d |
|- ( ( Y = B /\ Z = B ) -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
18 |
17
|
ex |
|- ( Y = B -> ( Z = B -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
19 |
15 18
|
jaoi |
|- ( ( Y = A \/ Y = B ) -> ( Z = B -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
20 |
19
|
com12 |
|- ( Z = B -> ( ( Y = A \/ Y = B ) -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
21 |
9 20
|
jaoi |
|- ( ( Z = A \/ Z = B ) -> ( ( Y = A \/ Y = B ) -> ( X = A -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
22 |
21
|
com13 |
|- ( X = A -> ( ( Y = A \/ Y = B ) -> ( ( Z = A \/ Z = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
23 |
|
eqtr3 |
|- ( ( Y = A /\ Z = A ) -> Y = Z ) |
24 |
23
|
2a1d |
|- ( ( Y = A /\ Z = A ) -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
25 |
24
|
ex |
|- ( Y = A -> ( Z = A -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
26 |
|
eqtr3 |
|- ( ( Y = B /\ X = B ) -> Y = X ) |
27 |
26 11
|
syl |
|- ( ( Y = B /\ X = B ) -> ( Y =/= X -> ( Z =/= X -> Y = Z ) ) ) |
28 |
27
|
impd |
|- ( ( Y = B /\ X = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
29 |
28
|
ex |
|- ( Y = B -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
30 |
29
|
a1d |
|- ( Y = B -> ( Z = A -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
31 |
25 30
|
jaoi |
|- ( ( Y = A \/ Y = B ) -> ( Z = A -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
32 |
31
|
com12 |
|- ( Z = A -> ( ( Y = A \/ Y = B ) -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
33 |
|
eqtr3 |
|- ( ( Z = B /\ X = B ) -> Z = X ) |
34 |
33 5
|
syl |
|- ( ( Z = B /\ X = B ) -> ( Z =/= X -> Y = Z ) ) |
35 |
34
|
adantld |
|- ( ( Z = B /\ X = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
36 |
35
|
ex |
|- ( Z = B -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) |
37 |
36
|
a1d |
|- ( Z = B -> ( ( Y = A \/ Y = B ) -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
38 |
32 37
|
jaoi |
|- ( ( Z = A \/ Z = B ) -> ( ( Y = A \/ Y = B ) -> ( X = B -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
39 |
38
|
com13 |
|- ( X = B -> ( ( Y = A \/ Y = B ) -> ( ( Z = A \/ Z = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
40 |
22 39
|
jaoi |
|- ( ( X = A \/ X = B ) -> ( ( Y = A \/ Y = B ) -> ( ( Z = A \/ Z = B ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) ) ) |
41 |
40
|
3imp |
|- ( ( ( X = A \/ X = B ) /\ ( Y = A \/ Y = B ) /\ ( Z = A \/ Z = B ) ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
42 |
1 2 3 41
|
syl3an |
|- ( ( X e. { A , B } /\ Y e. { A , B } /\ Z e. { A , B } ) -> ( ( Y =/= X /\ Z =/= X ) -> Y = Z ) ) |
43 |
42
|
imp |
|- ( ( ( X e. { A , B } /\ Y e. { A , B } /\ Z e. { A , B } ) /\ ( Y =/= X /\ Z =/= X ) ) -> Y = Z ) |