Metamath Proof Explorer
		
		
		
		Description:  Substitution of equal classes into membership relation.  (Contributed by Mario Carneiro, 6-Jan-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 3eltr3d.1 | |- ( ph -> A e. B ) | 
					
						|  |  | 3eltr3d.2 | |- ( ph -> A = C ) | 
					
						|  |  | 3eltr3d.3 | |- ( ph -> B = D ) | 
				
					|  | Assertion | 3eltr3d | |- ( ph -> C e. D ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3eltr3d.1 |  |-  ( ph -> A e. B ) | 
						
							| 2 |  | 3eltr3d.2 |  |-  ( ph -> A = C ) | 
						
							| 3 |  | 3eltr3d.3 |  |-  ( ph -> B = D ) | 
						
							| 4 | 1 3 | eleqtrd |  |-  ( ph -> A e. D ) | 
						
							| 5 | 2 4 | eqeltrrd |  |-  ( ph -> C e. D ) |