Metamath Proof Explorer


Theorem 3eltr4g

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by Wolf Lammen, 23-Nov-2019)

Ref Expression
Hypotheses 3eltr4g.1
|- ( ph -> A e. B )
3eltr4g.2
|- C = A
3eltr4g.3
|- D = B
Assertion 3eltr4g
|- ( ph -> C e. D )

Proof

Step Hyp Ref Expression
1 3eltr4g.1
 |-  ( ph -> A e. B )
2 3eltr4g.2
 |-  C = A
3 3eltr4g.3
 |-  D = B
4 2 1 eqeltrid
 |-  ( ph -> C e. B )
5 4 3 eleqtrrdi
 |-  ( ph -> C e. D )