Metamath Proof Explorer


Theorem 3eltr4i

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr4i.1
|- A e. B
3eltr4i.2
|- C = A
3eltr4i.3
|- D = B
Assertion 3eltr4i
|- C e. D

Proof

Step Hyp Ref Expression
1 3eltr4i.1
 |-  A e. B
2 3eltr4i.2
 |-  C = A
3 3eltr4i.3
 |-  D = B
4 1 3 eleqtrri
 |-  A e. D
5 2 4 eqeltri
 |-  C e. D