Metamath Proof Explorer


Theorem 3exbii

Description: Inference adding three existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995)

Ref Expression
Hypothesis 3exbii.1
|- ( ph <-> ps )
Assertion 3exbii
|- ( E. x E. y E. z ph <-> E. x E. y E. z ps )

Proof

Step Hyp Ref Expression
1 3exbii.1
 |-  ( ph <-> ps )
2 1 exbii
 |-  ( E. z ph <-> E. z ps )
3 2 2exbii
 |-  ( E. x E. y E. z ph <-> E. x E. y E. z ps )