Metamath Proof Explorer


Theorem 3expa

Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995) (Revised to shorten 3exp and pm3.2an3 by Wolf Lammen, 22-Jun-2022.)

Ref Expression
Hypothesis 3exp.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion 3expa
|- ( ( ( ph /\ ps ) /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 3exp.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
3 2 1 sylbir
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )