Step |
Hyp |
Ref |
Expression |
1 |
|
3gencl.1 |
|- ( D e. S <-> E. x e. R A = D ) |
2 |
|
3gencl.2 |
|- ( F e. S <-> E. y e. R B = F ) |
3 |
|
3gencl.3 |
|- ( G e. S <-> E. z e. R C = G ) |
4 |
|
3gencl.4 |
|- ( A = D -> ( ph <-> ps ) ) |
5 |
|
3gencl.5 |
|- ( B = F -> ( ps <-> ch ) ) |
6 |
|
3gencl.6 |
|- ( C = G -> ( ch <-> th ) ) |
7 |
|
3gencl.7 |
|- ( ( x e. R /\ y e. R /\ z e. R ) -> ph ) |
8 |
|
df-rex |
|- ( E. z e. R C = G <-> E. z ( z e. R /\ C = G ) ) |
9 |
3 8
|
bitri |
|- ( G e. S <-> E. z ( z e. R /\ C = G ) ) |
10 |
6
|
imbi2d |
|- ( C = G -> ( ( ( D e. S /\ F e. S ) -> ch ) <-> ( ( D e. S /\ F e. S ) -> th ) ) ) |
11 |
4
|
imbi2d |
|- ( A = D -> ( ( z e. R -> ph ) <-> ( z e. R -> ps ) ) ) |
12 |
5
|
imbi2d |
|- ( B = F -> ( ( z e. R -> ps ) <-> ( z e. R -> ch ) ) ) |
13 |
7
|
3expia |
|- ( ( x e. R /\ y e. R ) -> ( z e. R -> ph ) ) |
14 |
1 2 11 12 13
|
2gencl |
|- ( ( D e. S /\ F e. S ) -> ( z e. R -> ch ) ) |
15 |
14
|
com12 |
|- ( z e. R -> ( ( D e. S /\ F e. S ) -> ch ) ) |
16 |
9 10 15
|
gencl |
|- ( G e. S -> ( ( D e. S /\ F e. S ) -> th ) ) |
17 |
16
|
com12 |
|- ( ( D e. S /\ F e. S ) -> ( G e. S -> th ) ) |
18 |
17
|
3impia |
|- ( ( D e. S /\ F e. S /\ G e. S ) -> th ) |