Metamath Proof Explorer


Theorem 3gencl

Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses 3gencl.1
|- ( D e. S <-> E. x e. R A = D )
3gencl.2
|- ( F e. S <-> E. y e. R B = F )
3gencl.3
|- ( G e. S <-> E. z e. R C = G )
3gencl.4
|- ( A = D -> ( ph <-> ps ) )
3gencl.5
|- ( B = F -> ( ps <-> ch ) )
3gencl.6
|- ( C = G -> ( ch <-> th ) )
3gencl.7
|- ( ( x e. R /\ y e. R /\ z e. R ) -> ph )
Assertion 3gencl
|- ( ( D e. S /\ F e. S /\ G e. S ) -> th )

Proof

Step Hyp Ref Expression
1 3gencl.1
 |-  ( D e. S <-> E. x e. R A = D )
2 3gencl.2
 |-  ( F e. S <-> E. y e. R B = F )
3 3gencl.3
 |-  ( G e. S <-> E. z e. R C = G )
4 3gencl.4
 |-  ( A = D -> ( ph <-> ps ) )
5 3gencl.5
 |-  ( B = F -> ( ps <-> ch ) )
6 3gencl.6
 |-  ( C = G -> ( ch <-> th ) )
7 3gencl.7
 |-  ( ( x e. R /\ y e. R /\ z e. R ) -> ph )
8 df-rex
 |-  ( E. z e. R C = G <-> E. z ( z e. R /\ C = G ) )
9 3 8 bitri
 |-  ( G e. S <-> E. z ( z e. R /\ C = G ) )
10 6 imbi2d
 |-  ( C = G -> ( ( ( D e. S /\ F e. S ) -> ch ) <-> ( ( D e. S /\ F e. S ) -> th ) ) )
11 4 imbi2d
 |-  ( A = D -> ( ( z e. R -> ph ) <-> ( z e. R -> ps ) ) )
12 5 imbi2d
 |-  ( B = F -> ( ( z e. R -> ps ) <-> ( z e. R -> ch ) ) )
13 7 3expia
 |-  ( ( x e. R /\ y e. R ) -> ( z e. R -> ph ) )
14 1 2 11 12 13 2gencl
 |-  ( ( D e. S /\ F e. S ) -> ( z e. R -> ch ) )
15 14 com12
 |-  ( z e. R -> ( ( D e. S /\ F e. S ) -> ch ) )
16 9 10 15 gencl
 |-  ( G e. S -> ( ( D e. S /\ F e. S ) -> th ) )
17 16 com12
 |-  ( ( D e. S /\ F e. S ) -> ( G e. S -> th ) )
18 17 3impia
 |-  ( ( D e. S /\ F e. S /\ G e. S ) -> th )