Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
|- 1 e. ZZ |
2 |
|
2cn |
|- 2 e. CC |
3 |
2
|
mulid2i |
|- ( 1 x. 2 ) = 2 |
4 |
|
2lt3 |
|- 2 < 3 |
5 |
3 4
|
eqbrtri |
|- ( 1 x. 2 ) < 3 |
6 |
|
1re |
|- 1 e. RR |
7 |
|
3re |
|- 3 e. RR |
8 |
|
2re |
|- 2 e. RR |
9 |
|
2pos |
|- 0 < 2 |
10 |
8 9
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
11 |
|
ltmuldiv |
|- ( ( 1 e. RR /\ 3 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 1 x. 2 ) < 3 <-> 1 < ( 3 / 2 ) ) ) |
12 |
6 7 10 11
|
mp3an |
|- ( ( 1 x. 2 ) < 3 <-> 1 < ( 3 / 2 ) ) |
13 |
5 12
|
mpbi |
|- 1 < ( 3 / 2 ) |
14 |
|
3lt4 |
|- 3 < 4 |
15 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
16 |
15
|
breq2i |
|- ( 3 < ( 2 x. 2 ) <-> 3 < 4 ) |
17 |
14 16
|
mpbir |
|- 3 < ( 2 x. 2 ) |
18 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
19 |
18
|
breq2i |
|- ( ( 3 / 2 ) < ( 1 + 1 ) <-> ( 3 / 2 ) < 2 ) |
20 |
|
ltdivmul |
|- ( ( 3 e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 3 / 2 ) < 2 <-> 3 < ( 2 x. 2 ) ) ) |
21 |
7 8 10 20
|
mp3an |
|- ( ( 3 / 2 ) < 2 <-> 3 < ( 2 x. 2 ) ) |
22 |
19 21
|
bitri |
|- ( ( 3 / 2 ) < ( 1 + 1 ) <-> 3 < ( 2 x. 2 ) ) |
23 |
17 22
|
mpbir |
|- ( 3 / 2 ) < ( 1 + 1 ) |
24 |
|
btwnnz |
|- ( ( 1 e. ZZ /\ 1 < ( 3 / 2 ) /\ ( 3 / 2 ) < ( 1 + 1 ) ) -> -. ( 3 / 2 ) e. ZZ ) |
25 |
1 13 23 24
|
mp3an |
|- -. ( 3 / 2 ) e. ZZ |