Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 13-Apr-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3imp3i2an.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
3imp3i2an.2 | |- ( ( ph /\ ch ) -> ta ) |
||
3imp3i2an.3 | |- ( ( th /\ ta ) -> et ) |
||
Assertion | 3imp3i2an | |- ( ( ph /\ ps /\ ch ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imp3i2an.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
2 | 3imp3i2an.2 | |- ( ( ph /\ ch ) -> ta ) |
|
3 | 3imp3i2an.3 | |- ( ( th /\ ta ) -> et ) |
|
4 | 2 | 3adant2 | |- ( ( ph /\ ps /\ ch ) -> ta ) |
5 | 1 4 3 | syl2anc | |- ( ( ph /\ ps /\ ch ) -> et ) |