Description: A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3impcombi.1 | |- ( ( ph /\ ps /\ ph ) -> ( ch <-> th ) ) |
|
| Assertion | 3impcombi | |- ( ( ps /\ ph /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impcombi.1 | |- ( ( ph /\ ps /\ ph ) -> ( ch <-> th ) ) |
|
| 2 | 1 | biimpd | |- ( ( ph /\ ps /\ ph ) -> ( ch -> th ) ) |
| 3 | 2 | 3anidm13 | |- ( ( ph /\ ps ) -> ( ch -> th ) ) |
| 4 | 3 | ancoms | |- ( ( ps /\ ph ) -> ( ch -> th ) ) |
| 5 | 4 | 3impia | |- ( ( ps /\ ph /\ ch ) -> th ) |