Description: A 1-hypothesis propositional calculus deduction. (Contributed by Alan Sare, 25-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3impcombi.1 | |- ( ( ph /\ ps /\ ph ) -> ( ch <-> th ) ) |
|
Assertion | 3impcombi | |- ( ( ps /\ ph /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impcombi.1 | |- ( ( ph /\ ps /\ ph ) -> ( ch <-> th ) ) |
|
2 | 1 | biimpd | |- ( ( ph /\ ps /\ ph ) -> ( ch -> th ) ) |
3 | 2 | 3anidm13 | |- ( ( ph /\ ps ) -> ( ch -> th ) ) |
4 | 3 | ancoms | |- ( ( ps /\ ph ) -> ( ch -> th ) ) |
5 | 4 | 3impia | |- ( ( ps /\ ph /\ ch ) -> th ) |