Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3impdi.1 | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> th ) |
|
| Assertion | 3impdi | |- ( ( ph /\ ps /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impdi.1 | |- ( ( ( ph /\ ps ) /\ ( ph /\ ch ) ) -> th ) |
|
| 2 | 1 | anandis | |- ( ( ph /\ ( ps /\ ch ) ) -> th ) |
| 3 | 2 | 3impb | |- ( ( ph /\ ps /\ ch ) -> th ) |