Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 3impdir.1 | |- ( ( ( ph /\ ps ) /\ ( ch /\ ps ) ) -> th ) |
|
| Assertion | 3impdir | |- ( ( ph /\ ch /\ ps ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3impdir.1 | |- ( ( ( ph /\ ps ) /\ ( ch /\ ps ) ) -> th ) |
|
| 2 | 1 | anandirs | |- ( ( ( ph /\ ch ) /\ ps ) -> th ) |
| 3 | 2 | 3impa | |- ( ( ph /\ ch /\ ps ) -> th ) |