Metamath Proof Explorer


Theorem 3impdir

Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995)

Ref Expression
Hypothesis 3impdir.1
|- ( ( ( ph /\ ps ) /\ ( ch /\ ps ) ) -> th )
Assertion 3impdir
|- ( ( ph /\ ch /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 3impdir.1
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ ps ) ) -> th )
2 1 anandirs
 |-  ( ( ( ph /\ ch ) /\ ps ) -> th )
3 2 3impa
 |-  ( ( ph /\ ch /\ ps ) -> th )