Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3impdir.1 | |- ( ( ( ph /\ ps ) /\ ( ch /\ ps ) ) -> th ) |
|
Assertion | 3impdir | |- ( ( ph /\ ch /\ ps ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impdir.1 | |- ( ( ( ph /\ ps ) /\ ( ch /\ ps ) ) -> th ) |
|
2 | 1 | anandirs | |- ( ( ( ph /\ ch ) /\ ps ) -> th ) |
3 | 2 | 3impa | |- ( ( ph /\ ch /\ ps ) -> th ) |