Metamath Proof Explorer


Theorem 3impexp

Description: Version of impexp for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011)

Ref Expression
Assertion 3impexp
|- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ( ph /\ ps /\ ch ) -> th ) -> ( ( ph /\ ps /\ ch ) -> th ) )
2 1 3expd
 |-  ( ( ( ph /\ ps /\ ch ) -> th ) -> ( ph -> ( ps -> ( ch -> th ) ) ) )
3 id
 |-  ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ph -> ( ps -> ( ch -> th ) ) ) )
4 3 3impd
 |-  ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ( ph /\ ps /\ ch ) -> th ) )
5 2 4 impbii
 |-  ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) )