Description: Version of impexp for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3impexp | |- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id | |- ( ( ( ph /\ ps /\ ch ) -> th ) -> ( ( ph /\ ps /\ ch ) -> th ) ) | |
| 2 | 1 | 3expd | |- ( ( ( ph /\ ps /\ ch ) -> th ) -> ( ph -> ( ps -> ( ch -> th ) ) ) ) | 
| 3 | id | |- ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ph -> ( ps -> ( ch -> th ) ) ) ) | |
| 4 | 3 | 3impd | |- ( ( ph -> ( ps -> ( ch -> th ) ) ) -> ( ( ph /\ ps /\ ch ) -> th ) ) | 
| 5 | 2 4 | impbii | |- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |