Metamath Proof Explorer


Theorem 3impexpbicomVD

Description: Virtual deduction proof of 3impexpbicom . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.

1:: |- (. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ->. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ).
2:: |- ( ( th <-> ta ) <-> ( ta <-> th ) )
3:1,2,?: e10 |- (. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ->. ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ).
4:3,?: e1a |- (. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ->. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ).
5:4: |- ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) -> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) )
6:: |- (. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ->. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ).
7:6,?: e1a |- (. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ->. ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ).
8:7,2,?: e10 |- (. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ->. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ).
9:8: |- ( ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) -> ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) )
qed:5,9,?: e00 |- ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) <-> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) )
(Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 3impexpbicomVD
|- ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) <-> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) )

Proof

Step Hyp Ref Expression
1 idn1
 |-  (. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ->. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ).
2 bicom
 |-  ( ( th <-> ta ) <-> ( ta <-> th ) )
3 imbi2
 |-  ( ( ( th <-> ta ) <-> ( ta <-> th ) ) -> ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) <-> ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ) )
4 3 biimpcd
 |-  ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) -> ( ( ( th <-> ta ) <-> ( ta <-> th ) ) -> ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ) )
5 1 2 4 e10
 |-  (. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ->. ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ).
6 3impexp
 |-  ( ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) <-> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) )
7 6 biimpi
 |-  ( ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) -> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) )
8 5 7 e1a
 |-  (. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ->. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ).
9 8 in1
 |-  ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) -> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) )
10 idn1
 |-  (. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ->. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ).
11 6 biimpri
 |-  ( ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) -> ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) )
12 10 11 e1a
 |-  (. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ->. ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) ).
13 3 biimprcd
 |-  ( ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) -> ( ( ( th <-> ta ) <-> ( ta <-> th ) ) -> ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ) )
14 12 2 13 e10
 |-  (. ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ->. ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ).
15 14 in1
 |-  ( ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) -> ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) )
16 impbi
 |-  ( ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) -> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ) -> ( ( ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) -> ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) ) -> ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) <-> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) ) ) )
17 9 15 16 e00
 |-  ( ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) <-> ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) )