Description: Inference associated with 3impexpbicom . Derived automatically from 3impexpbicomiVD . (Contributed by Alan Sare, 31-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3impexpbicomi.1 | |- ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) |
|
Assertion | 3impexpbicomi | |- ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3impexpbicomi.1 | |- ( ( ph /\ ps /\ ch ) -> ( th <-> ta ) ) |
|
2 | 1 | bicomd | |- ( ( ph /\ ps /\ ch ) -> ( ta <-> th ) ) |
3 | 2 | 3exp | |- ( ph -> ( ps -> ( ch -> ( ta <-> th ) ) ) ) |