Metamath Proof Explorer


Theorem 3imtr4d

Description: More general version of 3imtr4i . Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995)

Ref Expression
Hypotheses 3imtr4d.1
|- ( ph -> ( ps -> ch ) )
3imtr4d.2
|- ( ph -> ( th <-> ps ) )
3imtr4d.3
|- ( ph -> ( ta <-> ch ) )
Assertion 3imtr4d
|- ( ph -> ( th -> ta ) )

Proof

Step Hyp Ref Expression
1 3imtr4d.1
 |-  ( ph -> ( ps -> ch ) )
2 3imtr4d.2
 |-  ( ph -> ( th <-> ps ) )
3 3imtr4d.3
 |-  ( ph -> ( ta <-> ch ) )
4 1 3 sylibrd
 |-  ( ph -> ( ps -> ta ) )
5 2 4 sylbid
 |-  ( ph -> ( th -> ta ) )