Metamath Proof Explorer


Theorem 3jaao

Description: Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Andrew Salmon, 13-May-2011)

Ref Expression
Hypotheses 3jaao.1
|- ( ph -> ( ps -> ch ) )
3jaao.2
|- ( th -> ( ta -> ch ) )
3jaao.3
|- ( et -> ( ze -> ch ) )
Assertion 3jaao
|- ( ( ph /\ th /\ et ) -> ( ( ps \/ ta \/ ze ) -> ch ) )

Proof

Step Hyp Ref Expression
1 3jaao.1
 |-  ( ph -> ( ps -> ch ) )
2 3jaao.2
 |-  ( th -> ( ta -> ch ) )
3 3jaao.3
 |-  ( et -> ( ze -> ch ) )
4 1 3ad2ant1
 |-  ( ( ph /\ th /\ et ) -> ( ps -> ch ) )
5 2 3ad2ant2
 |-  ( ( ph /\ th /\ et ) -> ( ta -> ch ) )
6 3 3ad2ant3
 |-  ( ( ph /\ th /\ et ) -> ( ze -> ch ) )
7 4 5 6 3jaod
 |-  ( ( ph /\ th /\ et ) -> ( ( ps \/ ta \/ ze ) -> ch ) )