| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jao |
|- ( ( ph -> ps ) -> ( ( ch -> ps ) -> ( ( ph \/ ch ) -> ps ) ) ) |
| 2 |
|
df-3or |
|- ( ( ph \/ ch \/ th ) <-> ( ( ph \/ ch ) \/ th ) ) |
| 3 |
|
jao |
|- ( ( ( ph \/ ch ) -> ps ) -> ( ( th -> ps ) -> ( ( ( ph \/ ch ) \/ th ) -> ps ) ) ) |
| 4 |
2 3
|
syl7bi |
|- ( ( ( ph \/ ch ) -> ps ) -> ( ( th -> ps ) -> ( ( ph \/ ch \/ th ) -> ps ) ) ) |
| 5 |
1 4
|
syl6 |
|- ( ( ph -> ps ) -> ( ( ch -> ps ) -> ( ( th -> ps ) -> ( ( ph \/ ch \/ th ) -> ps ) ) ) ) |
| 6 |
5
|
3imp |
|- ( ( ( ph -> ps ) /\ ( ch -> ps ) /\ ( th -> ps ) ) -> ( ( ph \/ ch \/ th ) -> ps ) ) |