| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3mix1 |
|- ( ph -> ( ph \/ ch \/ th ) ) |
| 2 |
1
|
imim1i |
|- ( ( ( ph \/ ch \/ th ) -> ps ) -> ( ph -> ps ) ) |
| 3 |
|
3mix2 |
|- ( ch -> ( ph \/ ch \/ th ) ) |
| 4 |
3
|
imim1i |
|- ( ( ( ph \/ ch \/ th ) -> ps ) -> ( ch -> ps ) ) |
| 5 |
|
3mix3 |
|- ( th -> ( ph \/ ch \/ th ) ) |
| 6 |
5
|
imim1i |
|- ( ( ( ph \/ ch \/ th ) -> ps ) -> ( th -> ps ) ) |
| 7 |
2 4 6
|
3jca |
|- ( ( ( ph \/ ch \/ th ) -> ps ) -> ( ( ph -> ps ) /\ ( ch -> ps ) /\ ( th -> ps ) ) ) |
| 8 |
|
3jao |
|- ( ( ( ph -> ps ) /\ ( ch -> ps ) /\ ( th -> ps ) ) -> ( ( ph \/ ch \/ th ) -> ps ) ) |
| 9 |
7 8
|
impbii |
|- ( ( ( ph \/ ch \/ th ) -> ps ) <-> ( ( ph -> ps ) /\ ( ch -> ps ) /\ ( th -> ps ) ) ) |