Metamath Proof Explorer


Theorem 3jaod

Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)

Ref Expression
Hypotheses 3jaod.1
|- ( ph -> ( ps -> ch ) )
3jaod.2
|- ( ph -> ( th -> ch ) )
3jaod.3
|- ( ph -> ( ta -> ch ) )
Assertion 3jaod
|- ( ph -> ( ( ps \/ th \/ ta ) -> ch ) )

Proof

Step Hyp Ref Expression
1 3jaod.1
 |-  ( ph -> ( ps -> ch ) )
2 3jaod.2
 |-  ( ph -> ( th -> ch ) )
3 3jaod.3
 |-  ( ph -> ( ta -> ch ) )
4 3jao
 |-  ( ( ( ps -> ch ) /\ ( th -> ch ) /\ ( ta -> ch ) ) -> ( ( ps \/ th \/ ta ) -> ch ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( ps \/ th \/ ta ) -> ch ) )