Description: Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3jaodan.1 | |- ( ( ph /\ ps ) -> ch ) |
|
3jaodan.2 | |- ( ( ph /\ th ) -> ch ) |
||
3jaodan.3 | |- ( ( ph /\ ta ) -> ch ) |
||
Assertion | 3jaodan | |- ( ( ph /\ ( ps \/ th \/ ta ) ) -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodan.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | 3jaodan.2 | |- ( ( ph /\ th ) -> ch ) |
|
3 | 3jaodan.3 | |- ( ( ph /\ ta ) -> ch ) |
|
4 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
5 | 2 | ex | |- ( ph -> ( th -> ch ) ) |
6 | 3 | ex | |- ( ph -> ( ta -> ch ) ) |
7 | 4 5 6 | 3jaod | |- ( ph -> ( ( ps \/ th \/ ta ) -> ch ) ) |
8 | 7 | imp | |- ( ( ph /\ ( ps \/ th \/ ta ) ) -> ch ) |