Metamath Proof Explorer


Theorem 3jaoi

Description: Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995)

Ref Expression
Hypotheses 3jaoi.1
|- ( ph -> ps )
3jaoi.2
|- ( ch -> ps )
3jaoi.3
|- ( th -> ps )
Assertion 3jaoi
|- ( ( ph \/ ch \/ th ) -> ps )

Proof

Step Hyp Ref Expression
1 3jaoi.1
 |-  ( ph -> ps )
2 3jaoi.2
 |-  ( ch -> ps )
3 3jaoi.3
 |-  ( th -> ps )
4 1 2 3 3pm3.2i
 |-  ( ( ph -> ps ) /\ ( ch -> ps ) /\ ( th -> ps ) )
5 3jao
 |-  ( ( ( ph -> ps ) /\ ( ch -> ps ) /\ ( th -> ps ) ) -> ( ( ph \/ ch \/ th ) -> ps ) )
6 4 5 ax-mp
 |-  ( ( ph \/ ch \/ th ) -> ps )