Metamath Proof Explorer


Theorem 3jaoian

Description: Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005)

Ref Expression
Hypotheses 3jaoian.1
|- ( ( ph /\ ps ) -> ch )
3jaoian.2
|- ( ( th /\ ps ) -> ch )
3jaoian.3
|- ( ( ta /\ ps ) -> ch )
Assertion 3jaoian
|- ( ( ( ph \/ th \/ ta ) /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 3jaoian.1
 |-  ( ( ph /\ ps ) -> ch )
2 3jaoian.2
 |-  ( ( th /\ ps ) -> ch )
3 3jaoian.3
 |-  ( ( ta /\ ps ) -> ch )
4 1 ex
 |-  ( ph -> ( ps -> ch ) )
5 2 ex
 |-  ( th -> ( ps -> ch ) )
6 3 ex
 |-  ( ta -> ( ps -> ch ) )
7 4 5 6 3jaoi
 |-  ( ( ph \/ th \/ ta ) -> ( ps -> ch ) )
8 7 imp
 |-  ( ( ( ph \/ th \/ ta ) /\ ps ) -> ch )