Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3jcad.1 | |- ( ph -> ( ps -> ch ) ) |
|
3jcad.2 | |- ( ph -> ( ps -> th ) ) |
||
3jcad.3 | |- ( ph -> ( ps -> ta ) ) |
||
Assertion | 3jcad | |- ( ph -> ( ps -> ( ch /\ th /\ ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jcad.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | 3jcad.2 | |- ( ph -> ( ps -> th ) ) |
|
3 | 3jcad.3 | |- ( ph -> ( ps -> ta ) ) |
|
4 | 1 | imp | |- ( ( ph /\ ps ) -> ch ) |
5 | 2 | imp | |- ( ( ph /\ ps ) -> th ) |
6 | 3 | imp | |- ( ( ph /\ ps ) -> ta ) |
7 | 4 5 6 | 3jca | |- ( ( ph /\ ps ) -> ( ch /\ th /\ ta ) ) |
8 | 7 | ex | |- ( ph -> ( ps -> ( ch /\ th /\ ta ) ) ) |