Metamath Proof Explorer


Theorem 3jcad

Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005)

Ref Expression
Hypotheses 3jcad.1
|- ( ph -> ( ps -> ch ) )
3jcad.2
|- ( ph -> ( ps -> th ) )
3jcad.3
|- ( ph -> ( ps -> ta ) )
Assertion 3jcad
|- ( ph -> ( ps -> ( ch /\ th /\ ta ) ) )

Proof

Step Hyp Ref Expression
1 3jcad.1
 |-  ( ph -> ( ps -> ch ) )
2 3jcad.2
 |-  ( ph -> ( ps -> th ) )
3 3jcad.3
 |-  ( ph -> ( ps -> ta ) )
4 1 imp
 |-  ( ( ph /\ ps ) -> ch )
5 2 imp
 |-  ( ( ph /\ ps ) -> th )
6 3 imp
 |-  ( ( ph /\ ps ) -> ta )
7 4 5 6 3jca
 |-  ( ( ph /\ ps ) -> ( ch /\ th /\ ta ) )
8 7 ex
 |-  ( ph -> ( ps -> ( ch /\ th /\ ta ) ) )