| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3cn |
|- 3 e. CC |
| 2 |
|
2cn |
|- 2 e. CC |
| 3 |
1 2
|
mulcli |
|- ( 3 x. 2 ) e. CC |
| 4 |
|
3z |
|- 3 e. ZZ |
| 5 |
|
2z |
|- 2 e. ZZ |
| 6 |
|
lcmcl |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( 3 lcm 2 ) e. NN0 ) |
| 7 |
6
|
nn0cnd |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( 3 lcm 2 ) e. CC ) |
| 8 |
4 5 7
|
mp2an |
|- ( 3 lcm 2 ) e. CC |
| 9 |
4 5
|
pm3.2i |
|- ( 3 e. ZZ /\ 2 e. ZZ ) |
| 10 |
|
2ne0 |
|- 2 =/= 0 |
| 11 |
10
|
neii |
|- -. 2 = 0 |
| 12 |
11
|
intnan |
|- -. ( 3 = 0 /\ 2 = 0 ) |
| 13 |
|
gcdn0cl |
|- ( ( ( 3 e. ZZ /\ 2 e. ZZ ) /\ -. ( 3 = 0 /\ 2 = 0 ) ) -> ( 3 gcd 2 ) e. NN ) |
| 14 |
13
|
nncnd |
|- ( ( ( 3 e. ZZ /\ 2 e. ZZ ) /\ -. ( 3 = 0 /\ 2 = 0 ) ) -> ( 3 gcd 2 ) e. CC ) |
| 15 |
9 12 14
|
mp2an |
|- ( 3 gcd 2 ) e. CC |
| 16 |
9 12 13
|
mp2an |
|- ( 3 gcd 2 ) e. NN |
| 17 |
16
|
nnne0i |
|- ( 3 gcd 2 ) =/= 0 |
| 18 |
15 17
|
pm3.2i |
|- ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) |
| 19 |
|
3nn |
|- 3 e. NN |
| 20 |
|
2nn |
|- 2 e. NN |
| 21 |
19 20
|
pm3.2i |
|- ( 3 e. NN /\ 2 e. NN ) |
| 22 |
|
lcmgcdnn |
|- ( ( 3 e. NN /\ 2 e. NN ) -> ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) = ( 3 x. 2 ) ) |
| 23 |
22
|
eqcomd |
|- ( ( 3 e. NN /\ 2 e. NN ) -> ( 3 x. 2 ) = ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) ) |
| 24 |
21 23
|
mp1i |
|- ( ( ( 3 x. 2 ) e. CC /\ ( 3 lcm 2 ) e. CC /\ ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) ) -> ( 3 x. 2 ) = ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) ) |
| 25 |
|
divmul3 |
|- ( ( ( 3 x. 2 ) e. CC /\ ( 3 lcm 2 ) e. CC /\ ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) ) -> ( ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) = ( 3 lcm 2 ) <-> ( 3 x. 2 ) = ( ( 3 lcm 2 ) x. ( 3 gcd 2 ) ) ) ) |
| 26 |
24 25
|
mpbird |
|- ( ( ( 3 x. 2 ) e. CC /\ ( 3 lcm 2 ) e. CC /\ ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) ) -> ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) = ( 3 lcm 2 ) ) |
| 27 |
26
|
eqcomd |
|- ( ( ( 3 x. 2 ) e. CC /\ ( 3 lcm 2 ) e. CC /\ ( ( 3 gcd 2 ) e. CC /\ ( 3 gcd 2 ) =/= 0 ) ) -> ( 3 lcm 2 ) = ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) ) |
| 28 |
3 8 18 27
|
mp3an |
|- ( 3 lcm 2 ) = ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) |
| 29 |
|
gcdcom |
|- ( ( 3 e. ZZ /\ 2 e. ZZ ) -> ( 3 gcd 2 ) = ( 2 gcd 3 ) ) |
| 30 |
4 5 29
|
mp2an |
|- ( 3 gcd 2 ) = ( 2 gcd 3 ) |
| 31 |
|
1z |
|- 1 e. ZZ |
| 32 |
|
gcdid |
|- ( 1 e. ZZ -> ( 1 gcd 1 ) = ( abs ` 1 ) ) |
| 33 |
31 32
|
ax-mp |
|- ( 1 gcd 1 ) = ( abs ` 1 ) |
| 34 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 35 |
33 34
|
eqtr2i |
|- 1 = ( 1 gcd 1 ) |
| 36 |
|
gcdadd |
|- ( ( 1 e. ZZ /\ 1 e. ZZ ) -> ( 1 gcd 1 ) = ( 1 gcd ( 1 + 1 ) ) ) |
| 37 |
31 31 36
|
mp2an |
|- ( 1 gcd 1 ) = ( 1 gcd ( 1 + 1 ) ) |
| 38 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 39 |
38
|
oveq2i |
|- ( 1 gcd ( 1 + 1 ) ) = ( 1 gcd 2 ) |
| 40 |
35 37 39
|
3eqtri |
|- 1 = ( 1 gcd 2 ) |
| 41 |
|
gcdcom |
|- ( ( 1 e. ZZ /\ 2 e. ZZ ) -> ( 1 gcd 2 ) = ( 2 gcd 1 ) ) |
| 42 |
31 5 41
|
mp2an |
|- ( 1 gcd 2 ) = ( 2 gcd 1 ) |
| 43 |
|
gcdadd |
|- ( ( 2 e. ZZ /\ 1 e. ZZ ) -> ( 2 gcd 1 ) = ( 2 gcd ( 1 + 2 ) ) ) |
| 44 |
5 31 43
|
mp2an |
|- ( 2 gcd 1 ) = ( 2 gcd ( 1 + 2 ) ) |
| 45 |
40 42 44
|
3eqtri |
|- 1 = ( 2 gcd ( 1 + 2 ) ) |
| 46 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
| 47 |
46
|
oveq2i |
|- ( 2 gcd ( 1 + 2 ) ) = ( 2 gcd 3 ) |
| 48 |
45 47
|
eqtr2i |
|- ( 2 gcd 3 ) = 1 |
| 49 |
30 48
|
eqtri |
|- ( 3 gcd 2 ) = 1 |
| 50 |
49
|
oveq2i |
|- ( ( 3 x. 2 ) / ( 3 gcd 2 ) ) = ( ( 3 x. 2 ) / 1 ) |
| 51 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
| 52 |
51
|
oveq1i |
|- ( ( 3 x. 2 ) / 1 ) = ( 6 / 1 ) |
| 53 |
|
6cn |
|- 6 e. CC |
| 54 |
53
|
div1i |
|- ( 6 / 1 ) = 6 |
| 55 |
52 54
|
eqtri |
|- ( ( 3 x. 2 ) / 1 ) = 6 |
| 56 |
28 50 55
|
3eqtri |
|- ( 3 lcm 2 ) = 6 |