Metamath Proof Explorer


Theorem 3lt6

Description: 3 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 3lt6
|- 3 < 6

Proof

Step Hyp Ref Expression
1 3lt4
 |-  3 < 4
2 4lt6
 |-  4 < 6
3 3re
 |-  3 e. RR
4 4re
 |-  4 e. RR
5 6re
 |-  6 e. RR
6 3 4 5 lttri
 |-  ( ( 3 < 4 /\ 4 < 6 ) -> 3 < 6 )
7 1 2 6 mp2an
 |-  3 < 6