Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3mixd.1 | |- ( ph -> ps ) |
|
Assertion | 3mix2d | |- ( ph -> ( ch \/ ps \/ th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | |- ( ph -> ps ) |
|
2 | 3mix2 | |- ( ps -> ( ch \/ ps \/ th ) ) |
|
3 | 1 2 | syl | |- ( ph -> ( ch \/ ps \/ th ) ) |