Step |
Hyp |
Ref |
Expression |
1 |
|
or4 |
|- ( ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) \/ ( ta \/ et ) ) ) |
2 |
|
or4 |
|- ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) <-> ( ( ph \/ ps ) \/ ( ch \/ th ) ) ) |
3 |
2
|
orbi1i |
|- ( ( ( ( ph \/ ch ) \/ ( ps \/ th ) ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) ) |
4 |
1 3
|
bitr2i |
|- ( ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) ) |
5 |
|
df-3or |
|- ( ( ( ph \/ ps ) \/ ( ch \/ th ) \/ ( ta \/ et ) ) <-> ( ( ( ph \/ ps ) \/ ( ch \/ th ) ) \/ ( ta \/ et ) ) ) |
6 |
|
df-3or |
|- ( ( ph \/ ch \/ ta ) <-> ( ( ph \/ ch ) \/ ta ) ) |
7 |
|
df-3or |
|- ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) ) |
8 |
6 7
|
orbi12i |
|- ( ( ( ph \/ ch \/ ta ) \/ ( ps \/ th \/ et ) ) <-> ( ( ( ph \/ ch ) \/ ta ) \/ ( ( ps \/ th ) \/ et ) ) ) |
9 |
4 5 8
|
3bitr4i |
|- ( ( ( ph \/ ps ) \/ ( ch \/ th ) \/ ( ta \/ et ) ) <-> ( ( ph \/ ch \/ ta ) \/ ( ps \/ th \/ et ) ) ) |