Description: Triple disjunction in terms of triple conjunction. (Contributed by NM, 8-Oct-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | 3oran | |- ( ( ph \/ ps \/ ch ) <-> -. ( -. ph /\ -. ps /\ -. ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ioran | |- ( -. ( ph \/ ps \/ ch ) <-> ( -. ph /\ -. ps /\ -. ch ) ) |
|
2 | 1 | con1bii | |- ( -. ( -. ph /\ -. ps /\ -. ch ) <-> ( ph \/ ps \/ ch ) ) |
3 | 2 | bicomi | |- ( ( ph \/ ps \/ ch ) <-> -. ( -. ph /\ -. ps /\ -. ch ) ) |